About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2021
Workshop paper
Addressing Unique Fairness Obstacles within Federated Learning
Abstract
Efforts to reduce social bias in machine learning has increased in the past several years. As data privacy concerns grow, finding techniques to train private, debiased machine learning models becomes increasingly important. Federated Learning (FL) has emerged as a popular privacy-preserving machine learning strategy. FL, however, by not providing complete access to training data, brings with it a unique set of difficulties in bias mitigation that have yet to be explored. In this paper, we delve into these difficulties, and how they can affect bias measured in federated learning models.