About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 1992
Conference paper
Adaptive language modeling using minimum discriminant estimation
Abstract
We present an algorithm to adapt a n-gram language model to a document as it is dictated. The observed partial document is used to estimate a unigram distribution for the words that already occurred. Then, we find the closest ngram distribution to the static n-gram distribution (using the discrimination information distance measure) and that satisfies the marginal constraints derived from the document. The resulting minimum discrimination information model results in a perplexity of 208 instead of 290 for the static trigram model on a document of 321 words.