About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
WWW 2020
Conference paper
Ad Hoc Table Retrieval using Intrinsic and Extrinsic Similarities
Abstract
Given a keyword query, the ad hoc table retrieval task aims at retrieving a ranked list of the top-k most relevant tables in a given table corpus. Previous works have primarily focused on designing table-centric lexical and semantic features, which could be utilized for learning-to-rank (LTR) tables. In this work, we make a novel use of intrinsic (passage-based) and extrinsic (manifold-based) table similarities for enhanced retrieval. Using the WikiTables benchmark, we study the merits of utilizing such similarities for this task. To this end, we combine both similarity types via a simple, yet an effective, cascade re-ranking approach. Overall, our proposed approach results in a significantly better table retrieval quality, which even transcends that of strong semantically-rich baselines.