About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Random Structures and Algorithms
Paper
Acyclic coloring of graphs
Abstract
A vertex coloring of a graph G is called acyclic if no two adjacent vertices have the same color and there is no two‐colored cycle in G. The acyclic chromatic number of G, denoted by A(G), is the least number of colors in an acyclic coloring of G. We show that if G has maximum degree d, then A(G) = 0(d4/3) as d → ∞. This settles a problem of Erdös who conjectured, in 1976, that A(G) = o(d2) as d → ∞. We also show that there are graphs G with maximum degree d for which A(G) = Ω(d4/3/(log d)1/3); and that the edges of any graph with maximum degree d can be colored by 0(d) colors so that no two adjacent edges have the same color and there is no two‐colored cycle. All the proofs rely heavily on probabilistic arguments. Copyright © 1991 Wiley Periodicals, Inc., A Wiley Company