Achieving practical and accurate indoor navigation for people with visual impairments
Abstract
Methods that provide accurate navigation assistance to people with visual impairments often rely on instrumenting the environment with specialized hardware infrastructure. In particular, approaches that use sensor networks of Bluetooth Low Energy (BLE) beacons have been shown to achieve precise localization and accurate guidance while the structural modifications to the environment are kept at minimum. To install navigation infrastructure, however, a number of complex and time-critical activities must be performed. The BLE beacons need to be positioned correctly and samples of Bluetooth signal need to be collected across the whole environment. These tasks are performed by trained personnel and entail costs proportional to the size of the environment that needs to be instrumented. To reduce the instrumentation costs while maintaining a high accuracy, we improve over a traditional regression-based localization approach by introducing a novel, graph-based localization method using Pedestrian Dead Reckoning (PDR) and particle filter. We then study how the number and density of beacons and Bluetooth samples impact the balance between localization accuracy and set-up cost of the navigation environment. Studies with users show the impact that the increased accuracy has on the usability of our navigation application for the visually impaired.