About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Accelerating frequent item counting with FPGA
Abstract
Frequent item counting is one of the most important operations in time series data mining algorithms, and the space saving algorithm is a widely used approach to solving this problem. With the rapid rising of data input speeds, the most challenging problem in frequent item counting is to meet the requirement of wire-speed processing. In this paper, we propose a streaming oriented PE-ring framework on FPGA for counting frequent items. Compared with the best existing FPGA implementation, our basic PE-ring framework saves 50% lookup table resources cost and achieves the same throughput in a more scalable way. Furthermore, we adopt SIMD-like cascaded filter for further performance improvements, which outperforms the previous work by up to 3.24 times in some data distributions.