Surendra B. Anantharaman, Joachim Kohlbrecher, et al.
MRS Fall Meeting 2020
We have been unable to observe electron paramagnetic resonance signals at temperatures of up to ∼ 570K from either the S= 1 2 Cu2+ ions or the S = 1 excited states of the Cu2+ - Cu2+ pairs in the new Bi2Sr2CaCu2Ox (2212) high Tc ∼80K superconductors, in the YBa2Cu3Ox (123) high Tc∼90K superconductors, or in the antiferromagnetic insulator CuO with TN∼ 230K. No present theory of the finite spin susceptibility in the paramagnetic state is compatible with the absence of EPR. Short-range resonating-valence-bond (RVB) theory gives zero spin susceptibility at low temperatures, but the absence of the S = 1 excited states of pairs appears to eliminate that theory as well. © 1988.
Surendra B. Anantharaman, Joachim Kohlbrecher, et al.
MRS Fall Meeting 2020
S. Cohen, T.O. Sedgwick, et al.
MRS Proceedings 1983
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
Peter J. Price
Surface Science