About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
COMCAS 2011
Conference paper
A SiGe E-band transceiver circuits for broadband communication
Abstract
Two sets of E-band transceiver circuits in a superhetrodyne architecture covering the lower 71-76GHz and upper 81-86GHz bands were designed and fabricated in 0.13m SiGe technology. The measured upper band transmitter RF gain chain is 30dB with a saturated output power of 15.2dBm. The LNA exhibits more than 15dB gain. A frequency quadrupler was used to generate the LO signal in both transmitter and receiver enabling a single PLL design with reuse of 60GHz intermediate and baseband circuits. The measured value of quadrupler conversion gain is approximately 8dB, to our best knowledge the highest reported value for a SiGe frequency quadrupler. Measurements of fabricated critical circuits in conjunction with modifications performed to proven 60GHz transceiver components enables a complete E-band transceiver circuit solution covering the entire E-band frequency range. The paper will focus on the critical E-band building blocks. © 2011 IEEE.