About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIKM 2010
Workshop paper
A peer-selection algorithm for information retrieval
Abstract
A novel method for creating collection summaries is developed, and a fully decentralized peer-selection algorithm is described. This algorithm finds the most promising peers for answering a given query. Specifically, peers publish per-term synopses of their documents. The synopses of a peer for a given term are divided into score intervals and for each interval, a KMV (K Minimal Values) synopsis of its documents is created. The synopses are used to effectively rank peers by their relevance to a multi-term query The proposed approach is verified by experiments on a large real-world dataset. In particular, two collections were created from this dataset, each with a different number of peers. Compared to the state-of-the-art approaches, the proposed method is effective and efficient even when documents are randomly distributed among peers. © 2010 ACM.