About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIAM Journal on Scientific Computing
Paper
A PARALLEL ALGORITHM FOR COMPUTING PARTIAL SPECTRAL FACTORIZATIONS OF MATRIX PENCILS VIA CHEBYSHEV APPROXIMATION
Abstract
We propose a distributed-memory parallel algorithm for computing some of the algebraically smallest eigenvalues (and corresponding eigenvectors) of a large, sparse, real symmetric positive definite matrix pencil that lie within a target interval. The algorithm is based on Chebyshev interpolation of the eigenvalues of the Schur complement (over the interface variables) of a domain decomposition reordering of the pencil and accordingly exposes two dimensions of parallelism: one derived from the reordering and one from the independence of the interpolation nodes. The new method demonstrates excellent parallel scalability, comparing favorably with PARPACK, and does not require factorization of the mass matrix, which significantly reduces memory consumption, especially for 3D problems. Our implementation is publicly available on GitHub.