About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2009
Conference paper
A new method for OOV detection using hybrid word/fragment system
Abstract
In this paper, we propose a new method for detecting regions with out-of-vocabulary (OOV) words in the output of a large vocabulary continuous speech recognition (LVCSR) system. The proposed method uses a hybrid system combining words and data-driven variable length sub word units. With the use of a single feature, the posterior probability of sub word units, this method outperforms existing methods published in the literature. We also presents a recipe to discriminatively train a hybrid language model to improve OOV detection rate. Results are presented on the RT04 broadcast news task. ©2009 IEEE.