About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CHI 2017
Conference paper
A new chatbot for customer service on social media
Abstract
Users are rapidly turning to social media to request and receive customer service; however, a majority of these requests were not addressed timely or even not addressed at all. To overcome the problem, we create a new conversational system to automatically generate responses for users requests on social media. Our system is integrated with state-of-the-art deep learning techniques and is trained by nearly 1M Twitter conversations between users and agents from over 60 brands. The evaluation reveals that over 40% of the requests are emotional, and the system is about as good as human agents in showing empathy to help users cope with emotional situations. Results also show our system outperforms information retrieval system based on both human judgments and an automatic evaluation metric.