About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDAR 2003
Conference paper
A model selection criterion for classification: Application to HMM topology optimization
Abstract
This paper proposes a model selection criterion for classification problems. The criterion focuses on selecting models that are discriminant instead of models based on the Occam's razor principle of parsimony between accurate modeling and complexity. The criterion, dubbed Discriminative Information Criterion (DIC), is applied to the optimization of Hidden Markov Model topology aimed at the recognition of cursively-handwritten digits. The results show that DICgenerated models achieve 18% relative improvement in performance from a baseline system generated by the Bayesian Information Criterion (BIC).