About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DAC 2019
Conference paper
A memory-efficient markov decision process computation framework using BDD-based sampling representation
Abstract
Although Markov Decision Process (MDP) has wide applications in autonomous systems as a core model in Reinforcement Learning, a key bottleneck is the large memory utilization of the state transition probability matrices. This is particularly problematic for computational platforms with limited memory, or for Bayesian MDP, which requires dozens of such matrices. To mitigate this difficulty, we propose a highly memory-efficient representation for probability matrices using Binary Decision Diagram (BDD) based sampling, and develop a corresponding (Bayesian/classical) MDP solver on a CPU-GPU platform. Simulation results indicate our approach reduces memory by one and two orders of magnitude for Bayesian/classical MDP, respectively.