About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
MOD 2003
Workshop paper
A learning-based approach to estimate statistics of operators in continuous queries: A case study
Abstract
Statistic estimation such as output size estimation of operators is a well-studied subject in the database research community, mainly for the purpose of query optimization. The assumption, however, is that queries are ad-hoc and therefore the emphasis has been on capturing the data distribution. When long standing continuous queries on a changing database are concerned, a more direct approach, namely building an estimation model for each operator, is possible. In this paper, we propose a novel learning-based method. Our method consists of two steps. The first step is to design a dedicated feature extraction algorithm that can be used incrementally to obtain feature values from the underlying data. The second step is to use a data mining algorithm to generate an estimation model based on the feature values extracted from the historical data. To illustrate the approach, this paper studies the case of similarity-based searches over streaming time series. Experimental results show this approach provides accurate statistic estimates with a low overhead. Copyright 2003 ACM.