About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AMIA Annual Symposium
Paper
A hybrid approach for automated mutation annotation of the extended human mutation landscape in scientific literature
Abstract
As the cost of DNA sequencing continues to fall, an increasing amount of information on human genetic variation is being produced that could help progress precision medicine. However, information about such mutations is typically first made available in the scientific literature, and is then later manually curated into more standardized genomic databases. This curation process is expensive, time-consuming and many variants do not end up being fully curated, if at all. Detecting mutations in the literature is the first key step towards automating this process. However, most of the current methods have focused on identifying mutations that follow existing nomenclatures. In this work, we show that there is a large number of mutations that are missed by using this standard approach. Furthermore, we implement the first mutation annotator to cover an extended mutation landscape, and we show that its F1 performance is the same performance as human annotation (F1 78.29 for manual annotation vs F1 79.56 for automatic annotation).