Publication
AMIA Annual Symposium
Paper

A hybrid approach for automated mutation annotation of the extended human mutation landscape in scientific literature

Abstract

As the cost of DNA sequencing continues to fall, an increasing amount of information on human genetic variation is being produced that could help progress precision medicine. However, information about such mutations is typically first made available in the scientific literature, and is then later manually curated into more standardized genomic databases. This curation process is expensive, time-consuming and many variants do not end up being fully curated, if at all. Detecting mutations in the literature is the first key step towards automating this process. However, most of the current methods have focused on identifying mutations that follow existing nomenclatures. In this work, we show that there is a large number of mutations that are missed by using this standard approach. Furthermore, we implement the first mutation annotator to cover an extended mutation landscape, and we show that its F1 performance is the same performance as human annotation (F1 78.29 for manual annotation vs F1 79.56 for automatic annotation).

Date

01 Jan 2018

Publication

AMIA Annual Symposium

Authors

Share