About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACL 2018
Conference paper
A graph-to-sequence model for AMR-to-text generation
Abstract
The problem of AMR-to-text generation is to recover a text representing the same meaning as an input AMR graph. The current state-of-the-art method uses a sequence-to-sequence model, leveraging LSTM for encoding a linearized AMR structure. Although it is able to model non-local semantic information, a sequence LSTM can lose information from the AMR graph structure, and thus faces challenges with large graphs, which result in long sequences. We introduce a neural graph-to-sequence model, using a novel LSTM structure for directly encoding graph-level semantics. On a standard benchmark, our model shows superior results to existing methods in the literature.