About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Astrophysical Journal
Paper
A fractal origin for the mass spectrum of interstellar clouds
Abstract
Interstellar molecular clouds have power-law size L and mass M distributions of the form n(L)dL = L-αL dL and n(M)dM = M-αM dM, where M ∝Lκ is also a power law. These relations are shown to result from the fractal and scale-free nature of interstellar gas with power indices that are independent of distance. The results are αL = 1 + D and αM = 1 + D/κ for interstellar fractal dimension D = 2.3 ± 0.3 and a value of κ in the range 2.4-3.7, as determined from cloud surveys in the literature. The same fractal dimension also results from the expected relation D = κ when the M(L) correlation includes many different surveys, spanning a range of 1010 in mass. These results imply that interstellar CO clouds are the unresolved parts of a pervasive fractal structure in the interstellar gas. The similarity between n(M) for interstellar clouds and n(M) for globular clusters suggests that the clusters formed inside fractal progenitor clouds at a nearly constant efficiency. © 1996. The American Astronomical Society. All rights reserved.