About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Sadhana - Academy Proceedings in Engineering Sciences
Paper
A font and size-independent OCR system for printed Kannada documents using support vector machines
Abstract
This paper describes an OCR system for printed text documents in Kannada, a South Indian language. The input to the system would be the scanned image of a page of text and the output is a machine editable file compatible with most typesetting software. The system first extracts words from the document image and then segments the words into sub-character level pieces. The segmentation algorithm is motivated by the structure of the script. We propose a novel set of features for the recognition problem which are computationally simple to extract. The final recognition is achieved by employing a number of 2-class classifiers based on the Support Vector Machine (SVM) method. The recognition is independent of the font and size of the printed text and the system is seen to deliver reasonable performance.