About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Chemical Physics
Paper
A femtosecond-time-scale photolysis study of vapor-phase GaCl
Abstract
Time-resolved absorption spectra are recorded for Ga atoms produced by the photolytic action of 300 fs, 248.5 nm laser pulses on gas-phase GaCl molecules. Photodissociation of GaCl at 248.5 nm produces both ground-state ( 2P1/2) and spin-orbit-excited (2P 1/2) Ga atoms, resulting in strong transient-absorption features at 403.3 and 417.2 nm, respectively. The experimental spectra are analyzed to obtain the kinetic energy of the photofragments, which is estimated to be ≃0.08 eV for both channels. The analysis suggests that the dissociation limits are (1) Ga 2P1/2+Cl* 2P 1/2 for the 403.3 nm channel; and (2) Ga* 2P 3/2+Cl 2P3/2 for the 417.2 nm channel. From these results, a new estimate for the dissociation energy of GaCl is obtained: D00=4.80±0.03 eV. © 1993 American Institute of Physics.