About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
A Decision Theoretic Formulation of a Training Problem in Speech Recognition and a Comparison of Training by Unconditional Versus Conditional Maximum Likelihood
Abstract
The choice of method for training a speech recognizer is posed as an optimization problem. The currently used method of maximum likelihood, while heuristic, is shown to be superior under certain assumptions to another heuristic: the method of conditional maximum likelihood. Copyright © 1983 by The Institute of Electrical and Electronics Engineers, Inc.