# 1-Bit matrix completion

## Abstract

In this paper, we develop a theory of matrix completion for the extreme case of noisy 1-bit observations. Instead of observing a subset of the real-valued entries of a matrix M, we obtain a small number of binary (1-bit) measurements generated according to a probability distribution determined by the real-valued entries of M. The central question we ask is whether or not it is possible to obtain an accurate estimate of M from this data. In general, this would seem impossible, but we show that the maximum likelihood estimate under a suitable constraint returns an accurate estimate of M when M∞ α and rank(M) r. If the log-likelihood is a concave function (e.g. the logistic or probit observation models), then we can obtain this maximum likelihood estimate by optimizing a convex program. In addition, we also show that if instead of recovering M we simply wish to obtain an estimate of the distribution generating the 1-bit measurements, then we can eliminate the requirement that M∞ α. For both cases, we provide lower bounds showing that these estimates are near-optimal. We conclude with a suite of experiments that both verify the implications of our theorems as well as illustrate some of the practical applications of 1-bit matrix completion. In particular, we compare our programme to standard matrix completion methods on movie rating data in which users submit ratings from 1 to 5. In order to use our program, we quantize this data to a single bit, but we allow the standard matrix completion program to have access to the original ratings (from 1 to 5). Surprisingly, the approach based on binary data performs significantly better.