About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
May 2003
This month's puzzle was suggested by Venkateshwar Rao Thota, based on a result of Srinivasa Ramanujan.
I will use "sqrt" to denote the positive square root, "b*c" to denote multiplication, and "b**c" to denote exponentiation (b raised to the c power).
Define f(n)=sqrt(1+2*sqrt(1+3*sqrt(1+4*sqrt(1+5*sqrt(...+n*sqrt(1)...))))) So f(1)=sqrt(1)=1, f(2)=sqrt(1+2)=sqrt(3)=1.732..., f(3)=sqrt(1+2*sqrt(1+3))=sqrt(1+4)=sqrt(5)=2.236... .
Clearly f is an increasing function of n.
First part: Give (with proof) a bound B such that f(n)<B for all n.
Second part: Give (with proof) an integer n such that f(n) > B - 1/10**100, that is, f(n) agrees with B up to 1 in the 100th decimal place.
We will post the names of those who submit a correct, original solution! If you don't want your name posted then please include such a statement in your submission!
We invite visitors to our website to submit an elegant solution. Send your submission to the ponder@il.ibm.com.
If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com
Challenge:
05/01/2003 @ 11:00 AM EST
Solution:
06/02/2003 @ 4:00 PM EST
List Updated:
06/23/2003 @ 5:00 PM EST
People who answered correctly:
Joe Fendel (5.01.2003 @03:52:13 PM EDT)
Rocke Verser (5.01.2003 @04:15:06 PM EDT)
Oleg Mazurov (5.01.2003 @05:47:02 PM EDT)
Vitaly Stakhovsky (5.01.2003 @05:47:02 PM EDT)
Alexey Vorobyov (5.01.2003 @09:02:15 PM EDT)
Ling Li (5.01.2003 @09:59:53 PM EDT)
Hagen von Eitzen (5.02.2003 @12:04:34 PM EDT)
Yunhong Zhou (5.03.2003 @04:09:23 AM EDT)
Surendar Reddy Nanchary (5.02.2003 @03:47:46 PM EDT)
Michael Brand (5.04.2003 @06:39:00 AM EDT)
Klaus Hoffmann (5.03.2003 @03:47:58 PM EDT)
Gyozo Nagy (5.04.2003 @03:36:10 AM EDT)
JoséH. Nieto (5.04.2003 @09:50:01 AM EDT)
Venezuela Maracaibo (5.04.2003 @09:50:01 AM EDT)
Ignacio Larrosa Cañestro (5.04.2003 @06:14:34 PM EDT)
Coserea Gheorghe (5.05.2003 @02:56:54 AM EDT)
George J. Ross (5.05.2003 @10:44:10 AM EDT)
Paul Lee (5.05.2003 @07:28:35 PM EDT)
David Woodruff (5.06.2003 @02:26:43 AM EDT)
Nis Jorgensen (5.06.2003 @04:44:39 AM EDT)
Abhinav Kumar (5.07.2003 @01:51:39 AM EDT)
John G. Fletcher (5.07.2003 @08:42:06 PM EDT)
Ariel Flat (5.08.2003 @01:51:18 PM EDT)
Alex Proudfoot (5.09.2003 @03:26:29 AM EDT)
Shmuel Spiegel (5.09.2003 @04:19:06 AM EDT)
Karl Dsouza (5.11.2003 @01:01:18 AM EDT)
Amit Sinha (5.12.2003 @03:27:42 AM EDT)
Andreas Knappe (5.12.2003 @04:45:35 AM EDT)
Jitesh Jain (5.15.2003 @03:44:01 AM EDT)
R. Nandakumar (5.20.2003 @08:40:23 AM EDT)
Raghav Boinepalli (5.21.2003 @02:13:57 PM EDT)
Daniel Chong Jyh Tar (5.21.2003 @09:41:56 PM EDT)
Maxim G. Smith (5.22.2003 @03:19:49 PM EDT)
Dave Blackston (5.23.2003 @01:11:37 PM EDT)
Wei Liu (5.23.2003 @03:09:13 AM EDT)
Florbela Duarte (5.26.2003 @07:20:32 PM EDT)
Vishal Goel (5.30.2003 @01:20:25 AM EDT)
Alexis G Megas (5.30.2003 @06:22:57 PM EDT)
Dan Dima (6.1.2003 @05:50:12 AM EDT)
Dan Yu (6.2.2003 @04:42:50 AM EDT)
Andre Rzym (6.2.2003 @03:02:13 PM EDT)
Attention: If your name is posted here and you wish it removed please send email to the ponder@il.ibm.com.