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Neuro-symbolic AI has recently gained significant interest amid growing industrial
requirements for high-performance models that are nonetheless interpretable, verifiable,
and adaptable to new problem domains with a minimum of reconfiguration. Numerous
distinct categories of such methods have emerged, often characterized either as neural
nets somehow informed by symbolic logic or as symbolic logic somehow extracted from
neural nets. In contrast, we introduce a new paradigm to the mix, Neural=Symbolic, in
which the underlying neural model exactly corresponds to a system of logical formulae in
any of various real-valued logics (with classical logic as a special case). Evaluation of such
a Logical Neural Network (LNN) performs deductive inference in the associated logical
system and can answer complex, zero-shot queries rather than focusing exclusively on
predefined outputs. LNNs can easily incorporate existing domain knowledge, but can also
learn weights on (sub)formulae so as to minimize logical contradiction, thereby yielding
resilience to inconsistency. Additionally, LNNs are careful to distinguish true, false,
intermediate, and unknown truth values according to the open-world assumption by
working in terms of bounds rather than individual values, thereby yielding resilience to
incomplete knowledge. Lastly, LNNs are beginning to generate state-of-the-art results with
respect to both theory and application.
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Neuro-symbolic methods so far

- Neuro-symbolic combination patterns:

1. symbolic Neural symbolic standard DL, 2011+

oA

A O D 2. Symbolic[Neural] AlphaGo, 2016
D A O 3. Neural; Symbolic NS Concept Learner, 2019
Neuro-symbolic 4. Neural: Symbolic > Neural  MLN, 2006; ProbLog, 2007
Statistical AI combiners Symbolic AI
capabilities capabilities 5. Neurals,mpoiic LTN, 2016; NTP, 2017
o\ V 6. Neural[Symbolic] NTM, 2014; TRAIL, 2019
Neural \ /' First-order
)
netwotks > - Most common goals:
1. Understandability (via human-readable symbolic form)
Induction 3,4,5,6 Deduction
* But: Maintain two representations, including black box
Abduction
2. Better task generalizability (via reusable knowledge)
Garcez, 2019; Belle, 2020 (surveys) * But: Non-compositional models are not reusable

Kautz, 2020 https://www.cs.rochester.edu/u/kautz/talks/index.html

3. More complex problems (via adding reasoning ability)
Gray, 2020 http://ibm.biz/neuro-symbolic-ai

* But: Non-rigorous reasoning, simpler logics



Neuro-symbolic methods: another category

oA
A O[]
Logical DAO

Statistical AI Neural Networks Symbolic AI
capabilities capabilities

Neural First-order

networks logics

Induction Abduction  Deduction

Garcez, 2019; Belle, 2020 (surveys)
Kautz, 2020 https://www.cs.rochester.edu/u/kautz/talks/index.html
Gray, 2020 http://ibm.biz/neuro-symbolic-ai

Added neuro-symbolic combination pattern:

1. symbolic Neural symbolic standard DL, 2011+
2. Symbolic[Neural] AlphaGo, 2016
3. Neural ; Symbolic NS Concept Learner, 2019

4, Neural: Symbolic > Neural MLN, 2006; ProbLog, 2007

5. Neuralsympoiic LTN, 2016; NTP, 2017

6. Neural[Symbolic] NTM, 2014; TRAIL, 2019

7. Neural=Symbolic Logical Neural Networks, 2020

Most common goals:
1. Understandability (via human-readable symbolic form)
* Single human-readable representation, not two
2. Less data (generalize over tasks via reusable knowledge)
* Sub-models are composable/modular/reusable
3. More complex problems (via adding reasoning ability)

* Rigorous foundation 1) making both NNs and classic
logic special cases, 2) (bonus) formalizing abduction



1. Original (McCulloch and Pitts 1943) neuron as logic gate

y =step(Zx —0)
/‘T

‘AND’ Literally the first artificial neuron model
neuron was intended to model logical gates

0/1 inputs and outputs, variable number

of inputs
This precisely achieves (and generalizes)
1 1 classical ‘AND’ behavior:
X; Xy p Y

pAq=  [p+q>15] 0 0 0
? pVvq= [p+q > 0.5] 1 0 0
. -»q=[1—-p+qg>05 0 1 0
McCulloch and Pitts, 1943 Inpui;(jéz p=a=l pT4 J ) ) )



2. Weighted neuron (perceptron, 1958) as logic gate

Yy =step(w-x—0)

‘AND’
nheuron
Input w; Wy,
edge
Xi Xn

?

= [Input truth
values

Rosenblatt, 1958

Now add weights (and way to learn them)

Observe that ‘AND’ behavior is achieved in a
constrained region of the weight space:

ZWi — 6 >0 Conditions for true output
i

Vi,z w; —w; — 8 < 0 Conditions for false output
i
Intuition: Even one false input to ‘AND’ must

result in false, but all inputs true must result
in true



3. Differentiable neuron (MLPs, deep learning) as logic gate

y

‘AND’
neuron

Werbos, 197
Rumelhart, Hinton, and Williams, 1986

=fw-x—6)

Xn

?

Input truth
values

Sigmoid Rel U

Wilson and Cowan, 1972 Hahnloser, et al., 2000
Goodfellow, et al., 2015

Soften the step function to have derivatives

Train multiple connected neurons via
backpropagation

However, since inputs/outputs are now not just
0 or 1, we no longer have a connection to
classical logic as we did in previous neuron
models



4a. Constrained differentiable neuron (LNN) as logic gate

y =fw-x-6)

‘AND’
= (Constrained I neuron

optimization

= Input w; Wy,
edge
Xi Xn
Riegel, et al., 2020 ?

Logical Neurad Networks

. —
https://arxiv.org/abs/2006.13155 nput trut

values

—

“Classical region”

Can use any odd, monotonic
activation function fwith range
[0,1] scaled such that f(a) = a
and f(1 —a) =1 — a (including
sigmoid, [0,1]-ReLU)

l_'_l a
Threshold of truth parameter 0.5 < a < 1:

- Anyp = ais “true,” p <1 — ais “false”

Now the weight region for classical ‘AND’ is:

Zwia—BZa
i

Vi,ij—wia—H <l-a«a
j
Activation functions obeying LNN’s constraints

behave as classical logic gates for classical
inputs (theorem)



4b. Constrained differentiable neuron (LNN) as logic gate

y =fw-x-0) - Provide slack parameters s > 0 that govern
the degree of adherence to classical behavior

— Normal (unconstrained) neural networks are a special
case where the slacks are large

— Allows the idea of subsymbolic sub-network where,
say, only the output node acts as a truth value

‘AND’
= Constrained _,_. neuron — Slacks s; allow w; to shrink, thus can provide pruning
optimization of unnecessary inputs: Penalty on s; - w; encourages

either to equal O

« Now the weight region for classical ‘AND’ is:

= Input .
ed%e Wi o Z wia—0>a
Xi Xn Vi,ij—Wia—9S1—a+si
j
Riegel, et al., 2020 ? _ .
Logical Neurad Networks - But this does not yet address semantics of

. = ] t truth .
https://arxiv.org/abs/2006.13155 e (non-classical) values betweena and 1 — «



5a. Neuron (LNN) as real-valued logic gate

The most common real-valued logics:

Logic T-norm (AND) T-conorm Residuum
a®b (OR) (IMPLIES)
a®b a—->>b
Godel min{a, b} max{a, b} bifa < belsel
b
Product a-b at+b—a-b —ifa<belsel
a
tukasiewicz | max{0,a+b —1} min{l,a+b} min{1,1 —-a+ b}

tukasiewicz, 1920
Zadeh, 1965
Hajek, 1998

Since 1920, multiple rigorous real-valued
logics (where truth values 0 < x, y < 1) have
been studied mathematically and used

— A.k.a. many-valued, infinite-valued, or fuzzy logics
— R-logics (Hajek): IMPLIES/NOT via the residuum

— S-logics (Zadeh): IMPLIES/NOT via (1—a) @ b

All behave as classical logic for the special
case of 0/1 extremes, but differ for in-
VEERREES

Can capture probabilities (more on this later)



5b. Neuron (LNN) as real-valued logic gate

Example: tukasiewicz logic

Conjunction
p ® q=max{0,p +q—1}

Disjunction
p®q=1-((1-p) ®(1-q))=min{l,p+q}

Implication
p->q=(1-p) ®q=min{l,1-p+q}

Implication actually defined according to the
residuum, specifically: p » q = argmax{q = p & x}
X

i.e. such that modus ponens is just AND

tukasiewicz, 1920
Hajek, 1998

Note that this happens to be the same as the
RelLU activation function!

But it doesn’t allow the use of weighted inputs

10



5¢c. Neuron (LNN) as real-valued logic gate

- Properties:
New logic: Weighted tukasiewicz logic

Weights w express importance

Bias p establishes the operation
Conjunction
P(p®"r @ q®¥0) = max{0, min{1, § — w, (1 — p) — wo(1 — )}
=fw-x—0) for 6=Yw—p

Allw; = B = 1 gives unweighted case

All operations are continuous

Disjunction - Upholds many classical tautologies:
F@®r @ q® ) =1-"((1 - @ (1 - )
= max{0, min{ 1,1 — 8 + w,p + w,q}}
=f(w-x—0) for 6=8-1 - p=1-p, P =P
- p->q=-p®gq, DeMorganlaws

— Associativity (when g < min{1,w;})

Implication

Pp®Wp - q®Wa) = (1 - )@ @ qPWa) — Modus ponens is *"1(p®"s/Wa @ (p — q)®1/%a)
= max{0,min{ 1,1 — B + w,(1 — p) + wyq}}
- Now we have rigorous logical semantics for
all input/output values
Amato, di Nola, and Gerla, 2013

Riegel, et al., 2020 — Note that LNN can use similarly weighted versions

of any of the aforementioned real-valued logics !



6a. Neural network inference as logical reasoning

Inference rules for classical logic:

p p—>q F ¢q
q, p—>q F-p

-p->q@ F p
-(p—>q +—q
pAq F D

p, "(pAq) Fq
-p, DpPVqg F q
-(pVvq) +-p

modus ponens
modus tollens

conjunction elimination
modus ponendo tollens
disjunctive syllogism

Boole, 1854 (mathematical logic)
Godel, 1929 (FOL soundness and completeness)
Hajek, 1998 (t-norm fuzzy logics)

Steps that allow for the correct determination
(entailment) of a truth value given other truth
values

— Exact form is dependent on logic

There are sound and complete deductive
systems for classical first-order logic (1929)

— Alogical system is sound if and only if the inference
rules of the system admit only valid formulas

— Alogical systemis complete if and only if all valid

formula can be derived from the axioms and the
inference rules

Variants of this formalism have also been
shown for some real-valued logics

— Could provide a rigorous formalization of abduction

12



6b. Neural network inference as logical reasoning

Inference rules for real-valued logic:

Upward

Dw Dw Dw. Dw,
Lpgqg = (L, @ L") Upgq = " (U,"" ® U,

Downward upper bounds

Qwp/ ®1
ﬂ/wq((l - Lp) e ® Up@t/zwq)' Upwq <1

1 otherwise

Uq <

Downward lower bounds
B/w Qwp/wq ®1/w
=] A= 0™ @ ITG, Ly >0
0] otherwise

Fagin, Riegel, and Gray, 2020
Foundations of Reasoning with Uncertainty via Real-valued Logic
https://arxiv.org/abs/2008.02429

We showed for the first time that
inference in all real-valued logics
(including weighted versions) can be
sound and (strongly) complete

— There exists a sound/complete axiomatization
that works for any choice of connective functions

— For tukasiewicz and Godel logic, showed an MILP-
based decision procedure to check if yy, ...,yn - ¢
when ¢ and each y; are associated with a disjoint
union of intervals of candidate truth values

But: we would like a cheaper message-
passing procedure that can use current
infrastructure, e.g. Pytorch

— Note that when viewed as neural network
propagations, the necessary inference rules
cannot be done using only forward (“upward”)
inference

i)



6¢. Neural network inference as logical reasoning

v =fw x-6)
/
= Reverse l
inference
‘AND’
= Constrained | neuron
optimization
WTL
xn
Riegel, et al., ?
Logical Neurgd Networks = Input truth
https://arxiv.org/abs/2006.13155 wEllEs

Allow reverse (“downward”) inference to
compute inferences such as modus ponens

) + 6 —wyi - xy
= =

X

Message-passing style inference via Upward—
Downward algorithm:

— Provably converges in finite time

— Can be shown to be sound but ret complete because
dependencies between truth values are-rettracked
can be modeled with an extension to the NN
1. Initialize neurons with observed truth values
2. While not converged:

Upward pass

Downward pass

c. Aggregate truth values at propositions/predicates via
(optionally smooth) min/max

3. Inspect neurons representing predictions/queries



6d. Neural network inference as logical reasoning

= Truthvalue

bounds o ) = f(W Cx — 3)
o
= Reverse l
inference
‘AND’
= Constrained | neuron
optimization

Riegel, et al.,
Logical Neurgd Networks = Input truth
https://arxiv.org/abs/2006.13155 wEllEs

Note that for some activation functions, this
value may not be unique

— e.g.due to flat regions of ReLU

— But we can maintain lower and upper uncertainty
bounds I; and u; € [0,1] on the truth value of x;

This allows for the explicit representation of
ignorance (“don’t know”), thus permitting the
open-world assumption

— Inaddition, it serves as an explicit representation of
contradiction whenever [; > u;

For a certain choice of activation function,
truth value bounds are probability bounds

— Uses hybrid tukasiewicz/Godel activation function
implementing the Fréchet inequalities

— Bounds make no assumptions about independence
and are tight for acyclic formula graphs



7a. Data and learning

(b, A) AbX,B)) = (p(A,B)Vp(B,4)  (b(X,A)Ap(4,B)) - b(X,B) (c(A)Ac(B)Ap(4,B)) - (A=B)

VX,AB VX,AB VA,B

t t 1
7N 7N
b(X,B)

A

—

N
SN

b(xA) p(AB) c(4) c(B) p(AB)

,
-

b(X,A) b(X,B) p(AB) p(BA)

pata  bornln(e,s) partOf(e,s) typeCountry(e) =

United_States

Washington_DC | United_States

partor partor
Riegel, et al., 2020 Washington_DC

Logical Neural Networks, partOf
https://arxiv.org/abs/2006.13155

New York City

Data

Grounded representation; natively relational

— Predicates embodied as tables or, equivalently,
tensors or replicated neurons for each grounding

— Knowledge graph triples = cells in usual
example/feature dataset table

— Operators perform joins; quantifiers reductions

Inputs and outputs

— Any-task learning: generalization of supervised
learning: predict any variable(s) given settings of any
other variables(s)

— Training examples: worlds 1...M: values {X}, {Y}; each
world may have different variables set

— Ignorance/unobservability: generalization of missing
data handling: values are of the general form {/, u}

16



7b. Data and learning

Learning problem:
- Versatile general loss function

Contradiction loss

— Prediction error E: sum error on Y variables over all

rng EGGGIBW) + > e (L(518,W),u(X1B,W)) worlds 1...M

jEM kEN repPy . .
, ) o ' = E.g. hinge loss: try to make predicted truth value
St Vi €N, Viel, Sie t @ wie —fetlza Wik = 0 bounds [, and u, for each grounding r in Y at least as
vk €N, z(l @) wy—Betl<i—a B >0 tight as target truth value bounds [* and u
i€l — Contradiction loss £: sum amount of contradiction
(degree to which lower bounds cross upper bounds)
. . . over all neurons 1...N: maintain logical consistency of
Example error function E with £ = hinge loss: all knowledge
= P, is the predicate at neuron k, r is every (known)
E(X,Y|B,W) = Z (t’(l*, l.(X|B, W)) + ¢(u,(X|B, W),u*)) grounding in P,, and I, is the kth neuron’s inputs
(r,1* u*)ey

2(L,w) = (max{0,l — u})? - Gradient-based optimization

— All operations are continuous and, with smoothing,
differentiable; implemented in PyTorch

Riegel, et al., 2020: Frank-Wolfe for LNN Constrained ontimization: alternativelv. activati
Sen, et al., 2020: Double description method for LNN (and ILP, i.e. adding neurons) onstrained optimization; atternativery, activation
functions may be tailored to avoid the need for

Lu, et al., 2020: Inexact ADMM for LNN (also distributed) constraints (see paper)

17



8. Equivalence between neural networks and symbolic logic

(cC) Ac(B) Ap(A,B)) - (A=B)

Riegel, et al., 2020
Logical Neural Networks,
https://arxiv.org/abs/2006.13155

Neural net and logic statements are just two
renderings of the same model (“particle-wave
duality”), not two models that communicate

— Classical logic is precisely a special case: precise
deduction, e.g. math, code; planning

= Not: Approximation of logical behavior in the limit of
infinite training data/samples, etc.

— Standard neural networks are precisely a special
case: SotA prediction, object detection, etc.

= Not: Simpler NN/ML models not used in practice

Allows full spectrum in-between

— Can have ‘upper’ symbolic network and ‘lower’
subsymbolic network from raw inputs to first
symbols; or freely mix symbolic and subsymbolic
neurons

— Can freely mix precise and imprecise logic statements
(noisy rules, partial/inconsistent domain knowledge)
18



Comparison to other common neuro-symbolic ideas

((Smokes( ) A Asthma( ))
— Gough( )

Logic Tensor Network oo

Markov Logic Network

(Aethrra( ) A Friends( , )

(Srckess( ) A Asthma( )
- ) Cough(A)

— - Sokes(
Friends(A, C)

6.1 5.7) | Smokes(C)
Smokes(A) Asthma(A)

6.2) | Asthma(B)

G

’ J‘) Family(A, B)

Logical Neural Network

=
1

Cough( )

A Asthma( )

10 0.26
input

1 Smokes( ) 1
weights 1

Smokes( ) Asthma( ) Family( , )

(Smokes( )\ Astha( )  (APethma( ) A Fiends( , )) (Asthma( ) A Farrilv( , )
— Goueh( ) — - Sokes( ) — Asthrre( )

Asthma( ) Friends( , ) Asthma( )

Logic statements = points in embedding

Distributed/entangled: no node has a stand-alone
meaning; numbers (weights in high-d space) have non-
obvious semantics; structure (layers, width, connectivity)
has non-obvious interpretation

Inference (neural net inference) has no obvious step-by-
step explanation

Logic statements - cliques of terms in MRF

Disentangled, but not compositional (e.g. no re-use of
Smokes(A) A Asthma(A)); no representation of logic
connectives in MRF; numbers (potentials between 0 and
o) hard to interpret (e.g. 6.2)

Inference (sampling) has no obvious step-by-step
explanation

Logic statements = syntax trees of neurons

Disentangled, and 1-1 with each piece of logic statement:
each neuron has a meaning: either predicate or logical
connective; compositional/modular (i.e. language-like):
sub-expressions are reused, rather than repeated;
numbers have clear semantics: activations = real-valued
truth values, can represent probabilities if desired, weights
= relative importance in logical connectives

Inference is deterministically repeatable and has step-by-
step explanation: sequence of logical inferences

Learning: approximate satisfiability via gradient-
based training; Inference: NN

Precise logical inference is not a special case, exceptin
the limit of infinite training samples

Standard NN does not appear to be a special case, but
combinable with standard NN

Learning: approximate satisfiability via MCMC;
Inference: MRF

Precise logical inference is not a special case, exceptin
the limit of infinite weights (but then you’re not learning)

Standard NN is not a special case of MRF in general, but
perhaps combinable with standard NN

Learning: standard loss + contradiction term,
gradient-based; Inference: logical inference

Precise logical inference is a special case; standard NN
(deep, recurrent) is a special case; most common type of
benchmark: link pred w/ imperfect domain knowledge:
Precision  Recall

Method Accuracy

Hidden cough model: (Smokes(x) V —Exercises(z)) A
(Asthma(z) V Allergic(z)) — Cough(z)

39.8 £26 66.7 £11
0 90.6 £35
91 +37

LTN
MLN
LNN

34.6 +20
81.0 £11 7:
85.1 +11 76 3




Use case: Knowledge base
question answering (KBOA)

DBpadia

http://depedia.org/resource/John_McCarthy

=2 DBpedia o - B

About: John McCarthy (computer scientist)

An Entity of Type from Named Graph : within Data Space :
Property Value

» 1927-09-04 (xscicats

. 1927-9-4

s 2011-10-24 (xac:cate)

Knowledge base triples

) WIKIPEDIA

. A 0 McC

John McCarthy initially completed graduate
studies a#, California Institute of Technology
bafe™® moving to

IMcCar‘thy received many accolades and honors,

such as tme=i5? Turing Award for his
contributions to the topic of AI.

Jehn McCarthy, who coined the term

»"artificial intelligence”, was born in

on

. If TODs are present, they are utilized for ranking in
sentence selection,

*  Any set of documents (e.g., Common Crawl, Web Search)
can be used as the document corpus.

Was Roger Federer born in United States?

Federer

Birthplace
Switzerland

Ziirich
o
Liechtenstein
Switzerland

Geneva
°

Map data 2020 GeoBasis-DE/BKG (£2009), Googl]

COUNTRY




KBOA: Why it challenges default Al
(end-to-end deep learning)

Going beyond canned answers

— End-to-end deep learning (DL) selects from pre-
QALD (2016'10) canned existing sentences: can’t extrapolate to

. . answers that don’t appear in training data at all
» 408 questions train and 150 test
Existing systems generally are demonstrated on

a single dataset

LC-QuAD (2016-04)

« 4000 train and 1000 test No reasoning or understanding: can’t answer
. questions that require non-trivial reasoning
° Template based queStlonS beyond surface patterns

Small training sets

Question Type/Reasoning | Example | Supported — Space of all possible sentences is combinatorial
Simple Who is the mayor of Paris v

Multi-relational Give me all actors starring in movies directed by William Shatner. v — Unclear whether even end-to-end DL training
Count-based How many theories did Albert Einstein come up with? v .
Superlative | What is the highest mountain in Italy? v on all of the sentences on the Internet is
Comparative | Does Breaking Bad have more episodes than Game of Thrones? enough for ‘understanding’ to emerge

Geographic | Was Natalie Portman born in the United States? v

Temporal When will start [sic| the final match of the football world cup 20187 No ab||.|ty to exp lain answer

Table 2: Question types supported by DTQA ., with examples from QALD .. .
Q YPES SUPP ) P Q — End-to-end DL would rely on ability to explain

pattern matching ”




KBOQA: an approach via understanding

Instead of trying to map input (question) words to output Datset P R F  FIQALD
(answer) words: first map question words to abstract chomiee  OALDD 2934 3268 2981 4296
concepts (logic), then use reasoning to answer question HEQA QALD-9 3141 3216 3088 4533
. : e WDAqua* LC-QuAD 22.00 3800 28.00
Intermediate representations: AMR, SPARQL QAMP*  LCQuAD 2500 5000 3300
. Reusable, plug-and-play SOtA/near‘SOtA components NSQA LC-QuAD 38.19 4039 3829
. . . Table 1: NSQA performance on QALD-9 and LC-QuAD
| Semantic Parsing | Reasoning bers from respective papers
e [Entity Linking .| [Extended| More generalizability
— | AMR Parser — — | AMRto | LNN | ——=
‘ Relationship ‘ § Logic ‘ Sy London” — SotA on more than one QA dataset
Linking

‘ — Can extrapolate to unseen situations via
Knowledge : transferable knowledge summarizing many

EIE examples; doesn’t rely exclusively on training set
p——— More explainability
(select 7f (dbo:director 7 | WHERE {_ _
: dbr:Stanley_Kubrick)) ?f dbo:director dbr:Stanley_Kubrick . . .
T A— i - Prqwdes which knowledge and reasoning steps
relied on; can say “don’t know” via truth bounds
extended AMR LOGIC SPARQL
Kapanipathi, et al., 2020 (NSQA system: SotA KBQA) First neuro-symbolic win?

Asudillo, et al., 2020 (SotA AMR parsing) faul
Abdelaziz, et al., 2020 (SotA relation linking) ~ Over current default AT on competed benchrffark




Making the model & inference process human-understandable

DTQA Online Experience | Intre to OTQA TyMe 7

Was Albert Einstein born in Switzerland?

23



Learning to reason

Available

Conjecture  Processed

Clauses

Actions

Clauses

Concat

1T

88
B

Action
Clauses Distribution

FC Layers
Attention

Actions
Max Pool
Softmax

FC Layers

Problem Setting:
Given a set of axioms
Given a theorem or a conjecture to prove
Search for a proof of the theorem/conjecture
Approach:

Deep reinforcement learning approach to learn proof guidance strategies from
scratch

Novel neural representation of the state of a theorem-prover (logic embedding)

Novel attention-based policy

Use learning to tame worst-case
complexity

— Reasoningin FOL or HOL is very hard in worst
case (undecidable)

— Infinite number of actions (i.e., inferred facts)

SotA theorem-proving performance

— Outperformed existing all learning-based
approaches (15% more theorems) and some
traditional heuristics-based reasoners

— Recently surpassed the mature E-prover on the
hard Mizar-MPTP2078 subset by 2%

Abdelaziz, et al., A Deep Reinforcement Learning
Approach to First-Order Logic Theorem Proving,
AAAI 2021




Logical rule induction (ILP)

S1
1-relu- 1(é ,,,,,,,,,,,,,,,,
[r1, m]w1é Wy -—1'1 Ha Talrs

1

Joint end-to-end learning of rules and
operators (adds neurons)

— Flexible rule templates, backprop + double
description

PqQ
I's Mz |, relu-1
|
r [0

|-
1
|| T2hz Lr:ﬂz—" é T 1
, + Cwy (L= [pa]T)
| e — YOO

LNNA " ow Lrelu-1() — Weights allow higher accuracy than typical
116‘—)' & representations; qualitatively closer to ground

truth, simpler
(1) 1(a2) LNN-pred locIn(X,Z) < ngbr0f(X,Y) A locIn(Y,Z) Ground_tmth rule
(Countries-S2)

High-quality rules learned from small,

:,7' relu—l;i maxuutT
\ noisy data

0.8
8j§ 0.001 :locIn(X, Z) <+ invngbr0f(Y, Z) A locIn(X,Y)
0.2
0 0.002 :locIn(X, Z) + ngbr0f(Y, Z) A locIn(X,Y
0.2 . +2) _g (¥, 2) (X, Y) Rules from other neuro-
.g,g 0.006 :locIn(X, Z) < invlocIn(Y, Z) A locIn(X,Y) symbolic baseline methods
08 0.050 :locIn(X, Z) < locIn(X, Z) (dILP, NTP, NeuralILP, NLM)
a2 : © NesurallP 0.922 :1locIn(X, Z) < locIn(Y, Z) A locIn(X,Y)
0O 20 40 60 80 100
Gridworld: Rewards vs. Training Grids LNN-A (1.056)
Do NewralLD _ Ours locIn(X,Z) _ .
o WEGTo os7E  00iF 0543 1 059" 05 Sen, et al., Neuro-Symbolic
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KBC Results




Optimization/learning

a,B,W N———

v loss/mismatch

P1: min > max(0, Li(av, B, w) — Up(er, B,w)) | + f(e, B,w)
k

A

P
contradication
1

s.t. <a<l, wr=>0,i€ely,Vke N

Non-convex objective

2
w;po — B, + 1 > «a, (Conjunction)
Z wip(l—a)—Br+1<1—a,VkeN L and U non-smooth

€T . . . :
ek Constraints contain nonlinear coupling:
o now learnable (optionally per-neuron)

Training target mismatch

fla, Byw) = Z’rz— ((ng) — Li(e, 3, -u.'))? + ((.fz.(g) — Ui(e, B, ua))z)

i
w, o, J are optimziation variables

1, k: indices of neuron
w: weights; a: threshold; 3: bias




Optimization/learning

Problem P1 can be reformulated as:

:(‘ZI‘7ri-orr:!mlol:th:(’;ontradlction) and convex,
min f(x’ y) — h_(x’ y) s.t. C(x, y) S () e():RA+d 5 B™: nonconvex and smooth (variable coupling
XERLII .yER“’E bﬁtwgen w;, and «) )
f(-) is nonconvex (loss function) SotA Convergence rate
(improved) Inexact alternating direction method of multipliers (IADMM):
Augmented Lagrangian: Scalable with number of constraints
2
X 7 Z 1 2 ..
Lu(x,y,2) = flxy) + 5 [c(X-. y) + " - Q—HHAII’ (1) Better empirical performance
L] ]
Find x(**1) be an approximate solution of minx £,,(x,y*,z®) + p(!)||x — x®)|| by Can be made distributed

accelerated proximal point method

Find y(*t1) be an approximate solution of miny £, (x*+1) vy z(1)) 4 p(t)||y — y®)|

by accelerated proximal point method — DM (o)
- ‘:u,m,.!;,';‘“'
Update Z(f—‘rl) = [Z“) +wmc(x(*+”,y“+'))]+ . = = IALM (fea)
1 :
(1) — lle(x)ll i ;
Theorem 1. When w'") = ) og2 (t72) ' iADMM converges g
to the KKT points in a rate of O(e?) for nonconvex objective - ABMM e
and nonconvex constraints problems. =o=PGD
‘ Method Type Problem Constraint Cornp\ex'\ty ‘ m‘mlhx‘l‘nl-\‘rl'r'.ninm:; (r) number of iterations (1)
Frank-Wolfe penalty |minx f(x),st.e(x) <0 convex O ,2)
QP-AIPP penalty |minx f(x) + h(x),stAx = b convex O (e *-’j)
HiAPeM hybrid - miny f(x) 4 h(x), stAx = b, c(x) < 0 convex O(e=5/2) Lu, et al., "Training logical neural networks by
iPPP penlty ming f(x) + h(x),stAx = b, c(x) <0 nonconvex O(Ef'{’) . .
iALM AL mine £(x) 4+ hx). ste(x) = 0 nanconvex | (e —3) primal-dual methods for neuro-symbolic
|iADIVI|VI (Our work) | AL minx,y f(x,y) + h(x,y),ste(x,y) <0 nonconvex O(e—3) | reasoning", Submitted 2020

The major advantage of AL v.s. penalty: finite szie of dual variable in AL can guarantee the convergence (avoid ill-conditioning)




Reinforcement learning

A}
LOA ! Affordance,
H Predicates, External
i Action Knowledge
! templates
i
1
1
' s » 4 : LNN d . .
a, s sy | used in various
v i configurations
: Q Logical H
O g ! ! .
:;r::;:;n S8 State i @; Raw action
(o Sense .
O Reasonar “S; ! @; Safe action
7
""""""" P I I R St Raw state
t
4 Se Semantic T s¢ State as logical formulae
. » parser r; Reward
Environment ¢
k Extracted knowledge
! Knowledge base \| ! Themes 1
! Actions  Object types Predicates | = Homeworld Medieval world |
+ Open « Door « at/in/on « Rooms « Dungeons 1
[ ::ca + Container + edible II Fblé;r\;ule :g:tzlsclwmtule .
Ve | fzsgozi; : Eggﬁzcjgm 3 - Focd - Weapons \
o . Al '
Vemm=- {____.-\___]___. Agent
r
TextWorld ~ Gamedefiition TextWorld
Generator ™ -Quest [>T | Game Engine
- Descriptions
¥.
“ereeoPlaythrough e i Git-Glulx

Statistics

Reinforcement learning

— Generally massive number of trials needed

— Generally uses no knowledge (‘model-free’)

Goal: use knowledge to dramatically
reduce number of trials needed

| Al NIAIRY \
\$5555555] $5558685] 35 | 35 \93566885
188 |88 \S8\/ 88 | 88
I N N
Lo
U \ Lt
188 188
IStsssess'\is \i8 68
-y Vi | X
188 /\ | au sasssn\l sassasn\] 89 | 8388888\
188/ S\1 351 88 | 881 $5__| 831 89
185 $89\ $51 85 | 851 8§ 88| 8% 188 188
1 88 55\98\S5| 89 | 95| $398988\| 89 188 188
[ IR R N SN
$51 89 | 881 55 88
e 08 Nesasnn \es '\es \easensss \eassess

West of House
You are standing in an open field west of
a white house, with a boarded front door.

There is a small mailbox here.
> open mailbox

Opening the small mailbox reveals a leaflet.




Policy induction via rule learning

G* = argmaxg [E;(R(s¢, mg(ag|se)))], s.t. mg is LNN.

Matched (x) Matched (y);  OnFloor(x) OnFloor(y);
OnTop (x); OnTop (y); isFloor(y) isFloor(y) Observation Reward

ee

Multi-layered
LNN

Target

(0,0) - Ground
p(Move(1 0) - - - p(Move(3,2)

‘ — 1.2 3 4
Move(x,y)

Learn interpretable rules for logical actions:
Move(x,y)
= & )
~ IV _/
= =
Moveable(x,y) IsMoveRequired(x,y)

& OnFloor(x) & & nisFloor(y) &
L. 7 L.

Ry v~
SourceFloorQuery(x) TargetFloorQuery(y)

Learning rule-based policies

— RL (expected reward maximization) with LNN
constraints for interpretable policy

— Currently working on small problems like Blocks
Stacking with Double-Description optimization

Success
Method (50 games ) Ratio

Blocks (PILNN, N=3)
Zero-shot transfer
(train N=3->4)
Zero-shot transfer
(train N=3->5)
Zero-shot transfer
(train N=3->6)

Kimura, et al., Reinforcement Learning with
External Knowledge by using Logical Neural
Networks, KbRL workshop at IJCAI 2020




esiderata

Statistical AI (best of)

SN KN

NN

MRF-based

<

goQ@ge

<

Embedding-based

g o

<

,_
pd
=z

NENRONRNRRN

coming soon

coming soon-ish

coming soon-ish

working on it!
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Ongoing directions

Applied

Scaling to massive KBs —
MILP, HPC, typing, graph DB

QA/NLP - incomplete KBs,
temporal, narratives

Representation

Seeking collaborators!

Probabilities — extend to
handle enriched prob
knowledge as in Bayes nets

Embeddings — sub-symbolic
emergence, imprecise
concepts, intuition

Knowledge

Logic — lifting, higher-order
logic, including temporal and
spatial logic

Knowledge acquisition — via
semantic parsing

Learning

Reinforcement learning -
action pruning, RL+planning,
causal RL

Compositional & multi-task

learning — take advantage of
known structure
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Philosophical shift: Humans+AI

One task/variable

Unsupervised data +
labeled data

— @
Input/human role: Relies on largest number of labels possible
*  One-time human input, relatively thought-free

* Tryto be knowledge-free, i.e. always start from scratch/no
assumptions (blank slate)

Output/what model does: 1 task (predict 1 variable)

*  Fornew task, get new labels and train separate model

All tasks/variables

Knowledge D

Unsupervised data +
labeled data

Input/human role: Augments data with domain/innate/common
sense knowledge

. Humans oversee/adjust/control knowledge/model; reduces
pure reliance on massive data

+ Don’t need to start tabula rasa every time, keep building up
knowledge model (lifelong)

Output/what model does: all possible tasks (predict any variable)
*  Add to loss function: make all tasks work together

*  Sub-models (areas of knowledge) are modular, shareable,
reusable



Summary Logical Neural Networks

A framework for neural nets with a 1-to-1 correspondence with a
system of logical formulae, in which propagation is equivalent to
logical inference

Key ideas:

Logical

Neural Networks Learning: 1) constraints, 2) contradiction loss

Inference: 3) bidirectional, 4) truth bounds

Single representation capable of all 3 kinds of reasoning:
induction, deduction, abduction

*  Full power of classical logic as special case
*  Subsymbolic (standard) NN as special case/module
* Reasoning w/ uncertainty, probabilities as special case

Entire model is human-readable, each step in decision-
making has an explanation, sub-models are reusable

For more on this research program:

alexander.gray@ibm.com

_ | . Rigorous theoretical foundation: semantics of real-valued
http://ibm.biz/neuro-symbolic-ai
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