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The team
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Disparities in Dermatology
In African American population, melanoma is often diagnosed
at an advanced stage with deeper tumors
[MSL+17, WEK+11].
5 year survival rates for acral lentiginous melanoma (ALM) is
82.6% in caucasian population, but only 77.2% in african
american patients. [MCH15].
The paucity of images of skin manifestations of COVID-19 in
patients with darker skin is a problem, because it may make
identification of COVID-19 presenting with cutaneous
manifestations more difficult for both dermatologists and the
public. [LJZ+20]
Dermatologists started an international registry to catalog
examples of skin manifestations of Covid-19. The registry
compiled more than 700 cases, but only 34 of disorders in
Hispanic and 13 in Black patients were submitted. [Rab20]
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How these disparities are reflected in Healthcare
Machine Learning models?

1 Are standard dermatology image datasets used in ML
tasks biased with respect to skin tone? Can we quantify
this?

2 Are ML models robust against changes in the clinical
setting or unknown diseases samples?
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Machine Learning & Dermatology

Skin disease diagnosis using machine learning
1 Benchmark model for melanoma diagnosis

outperforms trained dermatologists [CNP+16]
2 ISIC challenges (https://www.isic-archive.com/)

Predictive inequity in computer vision with respect to
skin type

1 Automated face image analysis for gender
classification [BG18]

2 Pedestrian detection systems [WHM19]

Out-of-distribution detection in dermatology [AYAG19,
GNS+19, ZZL19, CHP+ss, PAT19, PST+20]
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Overview : Proposed Framework

Kinyanjui, et al. "Estimating skin tone and effects on classification performance in
dermatology datasets."MICCAI 2020.
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Sensitive Content Warning

Skin Disease Graphical Content Warning

Note that we will show skin disease examples that could be
sensitive or triggering to some viewers. We notice this, so
viewers can prepare themselves to adequately engage or, if
necessary, disengage for their own well-being.
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Datasets
ISIC 2018

10015 dermoscopic images
7 disease classes
2594 images with ground truth
segmentation masks for diseased
area

SD-198
6548 clinical images
198 disease classes
No segmentation data
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Segmentation to Obtain Non-Diseased Region
1 Finetune Mask R-CNN model ([HGDG17])

Adjust pretrained classifier with a FastRCNNPredictor with 2 classes (background
and mask)
Adjust mask predictor with new MaskRCNNPredictor with 2 classes and 512
hidden neurons

2 Further apply thresholding techniques on predicted grayscale mask including
contour extraction for ISIC2018 and grid search for optimal binary thresholding
for SD-136
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Skin Tone Metric of Non-Diseased Region
1 Given non-diseased pixels, characterize them with a skin tone metric

1 Use individual typology angle (ITA) [WWdPR15], Highly correlated with melanin
index

2 ITA = tan−1 ( L−50
b

)
× 180
π Where L is luminance and b quantifies amount of

yellow.
3 Use pixels with L and b values within 1 standard deviation to deal with outliers.

2 Bin into categories [CSD+15]

ITA Range Skin Tone Category Abbreviation

ITA > 55◦ Very Light very_lt
48◦ < ITA ≤ 55◦ Light 2 lt2
41◦ < ITA ≤ 48◦ Light 1 lt1
34.5◦ < ITA ≤ 41◦ Intermediate 2 int2
28◦ < ITA ≤ 34.5◦ Intermediate 1 int1
19◦ < ITA ≤ 28◦ Tanned 2 tan2
10◦ < ITA ≤ 19◦ Tanned 1 tan1
ITA ≤ 10◦ Dark dark

Figure from [WWdPR15].
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Results
Metrics for segmentation on ISIC 2018

The Mask R-CNN model yields an accuracy of 0.956, a false negative rate of
0.024, and a mean absolute error in ITA computation of 0.428 degrees. [KOC+19]
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Results (Cont.)
Metrics for segmentation on SD-136

The segmentation model on the SD-136 dataset yield an accuracy of 0.802, a false
negative rate of 0.076, and a mean absolute error in ITA computation of 3.572
degrees. [KOC+19]
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Results (Cont.)
Skin Tone Distribution

There is underrepresentation of darker skin tones in both datasets
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How these disparities are reflected in Healthcare
Machine Learning models?

1 Are standard dermatology image datasets used in ML
tasks biased with respect to skin tone? Can we quantify
this?

2 Are ML models robust against changes in the clinical
setting or unknown diseases samples?
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OOD for Skin Disease Classifiers
Recent advances in deep learning have led to breakthroughs in the development of
automated skin disease classification. As we observe an increasing interest in
these models in the dermatology space, it is crucial to address aspects such as
the robustness and fairness of these solutions.

We validated our approach in two use cases:
1 Different clinical settings.
2 Unknown disease classes.

Example images from unknown
disease case (top) and clinical
setting changes (bottom).
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Overview: Proposed Approach

Out-of-Distribution Detection in Dermatology using Input Perturbation and Subset
Scanning [KTC+21]
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Subset Scanning for Anomalous Pattern
Detection

Treat Neural Networks as data-generating systems and
apply anomalous pattern detection methods to activation data.

Subset Scanning efficiently searches over a large
combinatorial space in order to find groups of records that
differ the most from ‘expected’ behavior.
Some goodies about this type of approach:

1 We can provide detection improvements at run time.
2 We can abstract from domains and focus only on the deep representation of

the input.
3 No need to re-train or have labeled examples of the anomalies.
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Subset Scanning for Anomalous Pattern
Detection (Cont.)

Assumption

Activations from abnormal images have a differ-
ent distribution of p-values than normal samples.

p-value is the proportion of background activations (H0), drawn from the same node
for several clean samples, greater than the activation from a test sample.
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Subset Scanning for Anomalous Pattern
Detection (Cont.)

max
α
φ(α,Nα,N) =

Nα − Nα√
N

(1)

Where Nα is the number of p-values less
than α
N is the number of p-values
α is the level of significance
φ is a scoring function

How we score a test sample?

Scoring functions operate on a test sample in order to measure how much the
p-values deviate from uniform.
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Subset Scanning for Anomalous Pattern
Detection (Cont.)

NPSS maximization

Scoring functions may be viewed as set functions that operate on subsets of nodes.
We search for the highest scoring subset of nodes that maximize the deviance
from uniform.

F (S) = max
α

Fα(S) = max
α
φ(α,Nα(S),N(S)) (2)

Group vs. Individual Scanning

For group-based scanning our search space is: S = XŜ × OŜ, where XŜ is a
subset of test samples and OŜ is a subset of nodes’ activations.
For individual scanning we work with only one Xi .
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Subset Scanning for Anomalous Pattern
Detection (Cont.)
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Preliminary results

Results across settings

The layers for detecting new class are
different from the ones for OOD

[KTC+21]

Fairness of OOD detectors

We see varying performances for
samples of Dark skin tones. This instabil-
ity of performance for samples of Dark
skin tones may be partially because net-
work is trained on the ISIC 2019 data-
set that heavily lacks samples of Dark
skin tones.

Towards Fairness & Robustness in Machine Learning for Dermatology 29th July 2021 22 / 31



Conclusions and future work

1 The two skin disease datasets are biased towards lighter
skin with majority of the samples between ITA values
[34.5◦,48◦].

2 We can provide a single OOD detection for multiple
scenarios (clinical setting change or unknown disease)

3 Implementation of better segmentation models for clinical
images for all skin tones.

4 Experiments around stratification of skin tone by disease.
5 How a fair distribution looks like in this case?
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Other interesting work at the Kenya Lab
1 Subset Scanning

Cintas, C., Speakman, S., Akinwande, V., Ogallo, W., Weldemariam, K.,
Sridharan, S. and McFowland, E. Detecting Adversarial Attacks via Subset
Scanning of Autoencoder Activations and Reconstruction Error.
International Joint Conference on Artificial Intelligence (IJCAI) 2020.
Cintas, C., Das, P., Quanz, B., Speakman, S., Akinwande, V. and Chen, P.Y., 2021.
Towards creativity characterization of generative models via group-based
subset scanning. In Synthetic Data Generation Workshop at ICLR 2021.

2 ML in Healthcare
Tadesse et al. Unsupervised Discovery of Subgroups with Anomalous
Maternal and Neonatal Outcomes with WHO’s Safe Childbirth Checklist as
Intervention. NeurIPS Workshop on Machine Learning for Public Health (Best
Paper Award), December 2020.
Speakman et al. Automatic Stratification of Tabular Health Data. American
Medical Informatics Association Annual Symposium (AMIA) 2021.
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Asante, Thanks, Gracias!

@RTFMCelia celia.cintas@ibm.com
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