IBM Research - Israel
Publications
Our catalog of recent publications authored by IBM researchers, in collaboration with the global research community.
Accelerated Discovery Publications
Title | Author | Year | Conference/Journal | Focus | ||
---|---|---|---|---|---|---|
Causalvis: Visualizations for Causal Inference | Ehud Karavani, Grace Guo, Alex Endert, Bum Chul Kwon | 2023 | CHI 2023 | Causal inference | Link | |
FairPRS: adjusting for admixed populations in polygenic risk scores using invariant risk minimization | Ehud Karavani, Diego Machado Reyes, Aritra Bose, and Laxmi Parida | 2023 | Pacific Symposium on Biocomputing | Polygenic risk scores | Link | |
Using Artificial Intelligence to Interpret Digital Breast Tomosynthesis – current performance and future perspectives | Michal Rosen-Zvi, Yoel Shoshan, Lisa Mullen | 2022 | DI EUROPE. 2022:19 | Breast Cancer | ||
Evaluation of an Automated Method to Detect Missed Focal Liver Findings In Single-Phase CT Images of The Abdomen | Pedro L Esquinas, Yen-Fu Luo, Parisa Farzam, Tyler Baldwin, Moshe Raboh, Thomas Binder, Arkadiusz Sitek, Omid Sakhi, Yi-Qing Wang, Sameer Suman, Giovanni Palma, Paul Dufort, Ben Graf | 2022 | ISBI | Liver Cancer | ||
Machine learning for improving high-dimensional proxy confounder adjustment in healthcare database studies: An overview of the current literature | Richard Wyss, Chen Yanover, Tal El-Hay, Dimitri Bennett, Robert W. Platt, Andrew R. Zullo, Grammati Sari, Xuerong Wen, Yizhou Ye, Hongbo Yuan, Mugdha Gokhale, Elisabetta Patorno, Kueiyu Joshua Lin | 2022 | Pharmacoepidemiology and Drug Safety | Big data | ||
Leveraging Comprehensive Health Records to Breast Cancer Risk Prediction: A Binational Assessment | Michal Chorev, Vesna Barros, Adam Spiro, Ella Evron, Ella Barkan, Oren Kagan, Mika Amit, Michal Ozery-Flato, Ayelet Akselrod-Balin, Varda Shalev, Michal Rosen-Zvi, Michal Guindy | 2022 | AMIA | Breast Cancer | ||
Artificial Intelligence for Reducing Workload in Breast Cancer Screening with Digital Breast Tomosynthesis. | Yoel Shoshan, Ran Bakalo,Flora Gilboa-Solomon , Vadim Ratner, Ella Barkan, Michal Ozery-Flato, Mika Amit, Daniel Khapun,Emily Ambinder,Eniola Oluyemi, Babita Panigrahi, Philip Di Carlo, Michal Rosen-Zvi, Lisa Mullen | 2022 | Radiology | Breast Cancer | ||
Early prediction of metastasis in women with locally advanced breast cancer | Simona Rabinovici-Cohen, Tal Tlusty, Xose M. Fernandez, Beatriz Grandal Rejo | 2022 | SPIE Medical Imaging: Computer-Aided Diagnosis | Breast Cancer | ||
Context in Medical Imaging: The Case of Focal Liver Lesion Classication | Moshiko Raboh, Dana Levanony, Paul Dufort, and Arkadiusz Sitek | 2022 | SPIE Medical Imaging: Computer-Aided Diagnosis | Liver Cancer | ||
Predictive and Causal Analysis of No-Shows for Medical Exams During COVID-19: A Case Study of Breast Imaging in a Nationwide Israeli Health Organization | Michal Ozery-Flato, Ora Pinchasov, Miel Dabush-Kasa, Efrat Hexter, Gabriel Chodick, Michal Guindy,Michal Rosen-Zvi | 2021 | AMIA | Breast Cancer | ||
Quantification of tumor heterogeneity: from data acquisition to metric generation | Aditya Kashyap, Maria Anna Rapsomaniki, Vesna Barros, Anna Fomitcheva-Khartchenko, Adriano Luca Martinelli, Antonio Foncubierta Rodriguez, Maria Gabrani, Michal Rosen-Zvi, and Govind Kaigala | 2021 | Trends in Biotechnology | Cancer | ||
On the role of artificial intelligence in medical imaging of COVID-19. | Born, J., Beymer, D., Rajan, D., Coy, A., Mukherjee, V.V., Manica, M., Prasanna, P., Ballah, D., Guindy, M., Shaham, D. Shah, P.L., and Rosen-Zvi, M, | 2021 | Patterns | Biomarker Discovery, Cancer, COVID | ||
Lessons from the first DBTex Challenge | Jungkyu Park, Yoel Shoshan, Robert Martí, Pablo Gómez del Campo, Vadim Ratner, Daniel Khapun, Aviad Zlotnick, Ella Barkan, Flora Gilboa-Solomon, Jakub Chłędowski, Jan Witowski, Alexandra Millet, Eric Kim, Alana Lewin, Kristine Pysarenko, Sardius Chen, Julia Goldberg, Shalin Patel, Anastasia Plaunova, Melanie Wegener, Stacey Wolfson, Jiyon Lee, Sana Hava, Sindhoora Murthy, Linda Du, Sushma Gaddam, Ujas Parikh, Laura Heacock, Linda Moy, Beatriu Reig, Michal Rosen-Zvi, and Krzysztof J. Geras | 2021 | Nature Machine Intelligence | Breast Cancer | ||
A Case Study of Breast Imaging in a Nationwide Israeli Health Organization | Michal Ozery-Flato, Ora Pinchasov, Miel Dabush-Kasa, Efrat Hexter, Gabriel Chodick,Michal Guindy,Michal Rosen-Zvi | 2021 | AMIA | Breast Cancer | ||
Emulated clinical trials from longitudinal real-world data efficiently identify candidates for neurological disease modification: examples from parkinson’s disease | Laifenfeld Daphna, Chen Yanover, Michal Ozery-Flato, Oded Shaham, Michal Rosen-Zvi, Nirit Lev, Yaara Goldschmidt, and Iris Grossman | 2021 | Frontiers in pharmacology | Parkinson | ||
Evaluation of an artificial intelligence system for assisting neurologists with fast and accurate annotation of scalp electroencephalography data. | Subhrajit Roy, Isabell Kiral, Mahtab Mirmomeni, Todd Mummert, Alan Braz, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Mehmet Eren Ahsen, Toshiya Iwamori, Hiroki Yanagisawa, Hasan Poonawala, Piyush Madan, Yong Qin, Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf, Michal Rosen-Zvi, Gustavo Stolovitzky, Stefan Harrer | 2021 | EBioMedicine | EEG | ||
AI-assisted tracking of worldwide non-pharmaceutical interventions for COVID-19 | Parthasarathy Suryanarayanan, Ching-Huei Tsou, Ananya Poddar, Diwakar Mahajan, Bharath Dandala, Piyush Madan, Anshul Agrawal, Charles Wachira, Osebe Mogaka Samuel, Osnat Bar-Shira, Clifton Kipchirchir, Sharon Okwako, William Ogallo, Fred Otieno, Timothy Nyota, Fiona Matu, Vesna Resende Barros, Daniel Shatz, Oren Kagan, Sekou Remy, Oliver Bent, Shilpa Mahatma, Aisha Walcott-Bryant, Divya Pathak, Michal Rosen-Zvi | 2021 | Scientific Data | COVID-19 | Link | |
Towards effect estimation of Covid-19 non-pharmaceutical interventions | Vesna Barros, Itay Manes, Victor Akinwande, Osnat Bar-Shira, Celia Cintas, Michal Ozery-Flato, Yishai Shimoni, Michal Rosen-Zvi | 2021 | AMIA poster | COVID-19 | ||
Beyond Non-maximum Suppression-Detecting Lesions in Digital Breast Tomosynthesis Volumes | Yoel Shoshan, Aviad Zlotnick, Vadim Ratner, Daniel Khapun, Ella Barkan, and Flora Gilboa-Solomon. | 2021 | MICCAI | Breast Cancer | ||
Pre-biopsy Multi-class Classification of Breast Lesion Pathology in Mammograms. | Tal Tlusty, Michal Ozery-Flato, Vesna Barros, Ella Barkan, Mika Amit, David Gruen, Michal Guindy, Tal Arazim, Mona Rozin, Michal Rosen-Zvi and Efrat Hexter | 2021 | MLMI MICCAI | Breast Cancer | ||
An Ensemble of 3D U-Net Based Models for Segmentation of Kidney and Masses in CT Scans | Alex Golts, Daniel Khapun, Daniel Shats, Yoel Shoshan, Flora Gilboa-Solomon | 2021 | MICCAI Kidney and kidney Tumor Segmentation (KiTS) Challenge | Kidney Cancer | ||
Prediction of Five-Year Breast Cancer Recurrence in Women Treated with Neoadjuvant Chemotherapy | Simona Rabinovici-Cohen, Xosé M. Fernández, Beatriz Grandal Rejo, Efrat Hexter, Oliver Hijano Cubelos, Juha Pajula, Harri Pölönen, Fabien Reyal, and Michal Rosen-Zvi | 2021 | AMIA poster | Breast Cancer | ||
Self Supervised Contrastive Learning on Multiple Breast Modalities Boosts Classification Performance | Shaked Perek, Mika Amit, Efrat Hexter | 2021 | PRIME MICCAI | Breast Cancer | ||
A Glimpse into the Future: Disease Progression Simulation for Breast Cancer in Mammograms | Ibrahim Jubran, Moshiko Raboh Shaked Perek, David Gruen, Efrat Hexter | 2021 | SASHIMI MICCAI | Breast Cancer | ||
Framework for Identifying Drug Repurposing Candidates from Observational Healthcare Data | Ozery-Flato, Michal, et al. | 2020 | JAMIA Open (2020) | Machine Learning | ||
Improving the Performance and Explainability of Mammogram Classifiers with Local Annotations | L. Ness, E.Barkan, M.Ozery-Flato | 2020 | accepted to iMIMIC Workshop, MICCAI 2020 | Medical Imaging | ||
Multi-task learning for detection and classification of cancer in screening mammography | Maria V. Sainz de Cea, Karl Diedrich, Ran Bakalo, Lior Ness, David Richmond | 2020 | MICCAI 2020 | Medical Imaging | Selected Work | |
Radiomics for predicting response to neoadjuvant chemotherapy treatment in breast cancer | Simona Rabinovici-Cohen, Tal Tlusty, Ami Abutbul, Kari Antila, Xosé Fernandez, Beatriz Grandal Rejo, Efrat Hexter, Oliver Hijano Cubelos, Abed Khateeb, Juha Pajula, Shaked Perek | 2020 | Proceedings of SPIE 11318 Medical Imaging, Houston, Texas, United States, 2020 | Medical Imaging | ||
Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms | Thomas Schaffter, Diana SM Buist, Christoph I Lee, Yaroslav Nikulin, Dezso Ribli, Yuanfang Guan, William Lotter, Zequn Jie, Hao Du, Sijia Wang, Jiashi Feng, Mengling Feng, Hyo-Eun Kim, Francisco Albiol, Alberto Albiol, Stephen Morrell, Zbigniew Wojna, Mehmet Eren Ahsen, Umar Asif, Antonio Jimeno Yepes, Shivanthan Yohanandan, Simona Rabinovici-Cohen, Darvin Yi, Bruce Hoff, Thomas Yu, Elias Chaibub Neto, Daniel L Rubin, Peter Lindholm, Laurie R Margolies, Russell Bailey McBride, Joseph H Rothstein, Weiva Sieh, Rami Ben-Ari, Stefan Harrer, Andrew Trister, Stephen Friend, Thea Norman, Berkman Sahiner, Fredrik Strand, Justin Guinney, Gustavo Stolovitzky, Lester Mackey, Joyce Cahoon, Li Shen, Jae Ho Sohn, Hari Trivedi, Yiqiu Shen, Ljubomir Buturovic, Jose Costa Pereira, Jaime S Cardoso, Eduardo Castro, Karl Trygve Kalleberg, Obioma Pelka, Imane Nedjar, Krzysztof J Geras, Felix Nensa, Ethan Goan, Sven Koitka, Luis Caballero, David D Cox, Pavitra Krishnaswamy, Gaurav Pandey, Christoph M Friedrich, Dimitri Perrin, Clinton Fookes, Bibo Shi, Gerard Cardoso Negrie, Michael Kawczynski, Kyunghyun Cho, Can Son Khoo, Joseph Y Lo, A Gregory Sorensen, Hwejin Jung | 2020 | Journal of the American Medical Association (JAMA) Network Open, 2020 | Medical Imaging | Selected Work | |
Multimodal Prediction of Breast Cancer Relapse Prior to Neoadjuvant Chemotherapy Treatment | Simona Rabinovici-Cohen, Ami Abutbul, Xosé Fernandez, Oliver Hijano Cubelos, Shaked Perek, Tal Tlusty | 2020 | PRIME-MICCAI Workshop, 2020 | Medical Imaging | ||
The case of missed cancers: Applying AI as a radiologist’s safety net | Michal Chorev,Yoel Shoshan, Adam Spiro, Shaked Naor, Alon Hazan, Vesna Barros, Iuliana Weinstein, Esma Herzel, Varda Shalev, Michal Guindy,Michal Rosen-Zvi | 2020 | MICCAI 2020 | Medical Imaging, Machine Learning | Selected Work | |
Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammography Images | Ayelet Akselrod-Ballin, Michal Chorev , Yoel Shoshan, Adam Spiro, Alon Hazan, Roie Melamed, Ella Barkan, Esma Herzel, Shaked Naor, Ehud Karavani, Gideon Koren, Yaara Goldschmidt, Varda Shalev, Michal Rosen-Zvi, Michal Guind | 2019 | Radiology 292.2 (2019): 331-342, was presented also at "Best of RADIOLOGY in 2019 - The Editors of Radiology keep you up to date" at RSNA 2019 | Medical Imaging, Machine Learning | Selected Work | |
Using Deep Learning to improve Efficiency of Breast Cancer Tomosynthesis Screening | F. Gilboa-Solomon, R. Bakalo, E. Barkan, Y. Shoshan | 2019 | RSNA 2019 | Medical Imaging | ||
Mammogram Classification with Ordered Loss | R. Ben-Ari, Y. Shoshan, T. Tlusty | 2019 | AIME 2019 | Medical Imaging | ||
Learning from Longitudinal Mammography Studies | S. Perek, L. Ness, M. Amit, E. Barkan, G. Amit | 2019 | MICCAI 2019 | Medical Imaging | Selected Work | |
Automatically detecting data drift in machine learning classifiers | O.Raz, M. Zalmanovici , A. Zlotnick , E. Farchi, O. Raz | 2019 | EDSMLS'19 | Medical Imaging | ||
Classification and Detection in Mammograms with Weak Supervision via Dual Branch Deep Neural Net | R. Bakalo, R. Ben-Ari, J. Goldberger | 2019 | ISBI 2019 | Medical Imaging | ||
How the weather affects the pain of citizen scientists using a smartphone app | Dixon, William G., et al. | 2019 | NPJ digital medicine 2.1 (2019): 1-9. | Machine Learning | Selected Work | |
Comment: Causal Inference Competitions: Where Should We Aim? | E.Karavani , T.El-Hay , Y. Shimoni , C.Yanover | 2019 | Statistical Science 34.1 (2019): 86-89. | Machine Learning | ||
Inferring new relations between medical entities using literature curated term co-occurrences | Spiro, Adam, Jonatan Fernández García, and Chen Yanover. | 2019 | JAMIA open 2.3 (2019): 378-385. | Machine Learning | ||
Framework for reliable value assessment of treatments using causal analysis of observational data: support matching biological therapy to rheumatoid arthritis patients | Y. Shimoni, S. Ravid, P. Bak, E. Karavani, S. Hensley Alford, D. Meade, Y. Goldschmidt | 2019 | Value in Health 22, S389 (2019). | Machine Learning | Selected Work | |
A discriminative approach for finding and characterizing positivity violations using decision trees | Karavani Ehud, Peter Bak, and Yishai Shimoni. | 2019 | arXiv preprint arXiv:1907.08127 (2019). | Machine Learning | ||
An Evaluation Toolkit to Guide Model Selection and Cohort Definition in Causal Inference | Shimoni Yishai, et al. | 2019 | arXiv preprint arXiv:1906.00442 (2019). | Machine Learning | ||
Factorial HMMs with Collapsed Gibbs Sampling for Optimizing Long-term HIV Therapy | Amit Gruber, Chen Yanover, Tal El-Hay, Anders Sonerborg, Francesca Incardona, Yaara Goldschmidt | 2018 | International Conference on Artificial Intelligence and Statistics. 2018. | Machine Learning | ||
Adversarial balancing for causal inference | Ozery-Flato, Michal, et al. | 2018 | arXiv preprint arXiv:1810.07406 (2018). | Machine Learning | ||
Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification | Shimoni, Yishai | 2018 | PLoS computational biology 14.2 (2018): e1006026. | Machine Learning | ||
Characterizing Subpopulations with Better Response to Treatment Using Observational Data-an Epilepsy Case Study | Ozery-Flato, Michal, et al. | 2018 | bioRxiv (2018): 290585. | Machine Learning | Selected Work | |
Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification | Yishai Shimoni | 2018 | PLoS Comput Biol. 2018 Feb 22;14(2):e1006026. | Machine Learning | ||
Benchmarking Framework for Performance-Evaluation of Causal Inference Analysis | Yishai Shimoni, Chen Yanover , Ehud Karavani , and Yaara Goldschmnidt | 2018 | arXiv preprint arXiv:1802.05046 (2018). | Machine Learning | ||
Mammography Dual View Mass Correspondence | S. Perek, A. Hazan, E. Barkan, A. Akselrod Ballin | 2018 | KDD Workshop 2018 | Medical Imaging | ||
Unsupervised Clustering of Mammograms for Outlier Detection and Breast Density Estimation | R. Ben-Ari, T. Tlusty and G.Amit | 2018 | ICPR 2018 | Medical Imaging | ||
Siamese Network for Dual-View Mammography Mass Matching | S. Perek, A. Hazan, E. Barkan, A. Akselrod Ballin | 2018 | MICCAI BIA workshop 2018 | Medical Imaging | ||
Digital Mammography DREAM Challenge: The Core of Top Performing Methods, Special Session | R. Ben-Ari | 2018 | Biomedical Health Informatics, 2018 | Medical Imaging | ||
Weakly Supervised Classification and Localization in Mammograms via Dual Branch Deep Network | R. Bakalo, J. Goldberger and R. Ben-Ari | 2018 | IMVC 2018 | Medical Imaging | ||
Regularized Adversarial Examples for Model Interpretability | Yoel Shoshan, Vadim Ratner | 2018 | arXiv, November 2018 | Medical Imaging | ||
Learning Multiple Non-Mutually-Exclusive Tasks for Improved Classification of Inherently Ordered Labels | Vadim Ratner, Yoel Shoshan, Tal Kachman | 2018 | arXiv May 2018 | Medical Imaging | ||
AdapterNet - Learning Input Transformation for Domain Adaptation | Alon Hazan, Yoel Shoshan, Daniel Khapun, Roy Aladjem, Vadim Ratner | 2018 | arXiv, May 2018 | Medical Imaging | ||
Estimating Effects Of Second Line Therapy For Type 2 Diabetes Mellitus: Retrospective Cohort Study | Assaf Gottlieb, Chen Yanover, Amos Cahan, Yaara Goldschmidt, BMJ Open Diabetes Research and Care, 5:e000435, 2017 | 2017 | BMJ Open Diabetes Research and Care, 5:e000435, Year:2017 | Machine Learning | Selected Work | |
Using a Data-Driven Policy Decision Support Tool | Michal Chorev, Lavi Shpigelman, Peter Bak, Avi Yaeli, Edwin Michael, Ya’ara Goldschmidt | 2017 | MedInfo 2017 | Machine Learning | ||
A Data-Driven Decision-Support Tool for Population Health Policies | Chorev M, Shpigelman L, Bak P, Yaeli A, Michael E, Goldschmidt Y | 2017 | Stud Health Technol Inform.2017;245:332-336. 2017 | Machine Learning, Medical Imaging | Selected Work | |
Fast and Efficient Feature Engineering for Multi-Cohort Analysis of EHR Data | Michal Ozery-Flato, Chen Yanover, Assaf Gottlieb, Omer Weissbrod, Naama Parush Shear-Yashuv, and Yaara Goldschmidt | 2017 | Stud Health Technol Inform.235:181-185, 2017 | Machine Learning | Selected Work | |
Epidemiological models without process noise are probably over confident | Lavi Shpigelman, Michal Chorev, Zeev Waks, Ya’ara Goldschmidt, Edwin Michael. | 2017 | Stud Health Technol Inform.235:136-140. 2017 | Machine Learning | ||
Changes in Vaginal Community State Types Reflect Major Shifts in the Microbiome | J. Paul Brooks, Gregory A. Buck, Guanhua Chen, Liang Diao, David J. Edwards, Jennifer M. Fettweis, Snehalata Huzurbazar, Alexander Rakitin, Glen A. Satten, Ekaterina Smirnova, Zeev Waks, Michelle L. Wright, Chen Yanover, Yi-Hui Zhou | 2017 | Microbial Ecology in Health and Disease, 2017 | Machine Learning | ||
Integrated multisystem analysis in a mental health and criminal justice ecosystem | Falconer E, El-Hay T, Alevras D, Docherty J, Yanover C, Kalton A, Goldschmidt, Rosen-Zvi | 2017 | Health & Justice 5:4 2017 | Machine Learning | ||
Deep Learning for Automatic Detection of Abnormal Findings in Breast Mammography | Akselrod-Ballin, Ayelet; Karlinsky, Leonid.; Hazan, Alon; Bakalo, Ran; Horesh, Ami Ben; Shoshan, Yoel; Barkan, Ella | 2017 | Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support | Medical Imaging | ||
Weakly Supervised DNN with AUC Loss for Classifcation of Imbalanced Mammogram Datasets | J. Sulam, R. Ben-Ari and P. Kisilev | 2017 | EG VCBM 2017 | Medical Imaging | ||
Deep Learning for Automatic Detection of Abnormal Findings in Breast Mammography | A. Akselrod-Ballin, L. Karlinsky, A. Hazan, R. Bakalo, E. Barkan, A. Ben-Horesh | 2017 | DLMIA MICCAI 2017 | Medical Imaging | ||
Mammogram Classification and Abnormality Detection from Nonlocal Labels using Deep Multiple Instance Neural Network | Y. Choukroun, R. Bakalo, R. Ben-Ari, A. Akselrod-Ballin, E. Barkan and P. Kisilev | 2017 | EG VCBM 2017 | Medical Imaging | ||
A CNN based Method for Mass Detection and Classification in Breast Mammography | A. Akselrod-Ballin, L. Karlinsky, S. Alpert, S. Hasoul, E. Barkan | 2017 | Comp. in Bio. and Bio. Eng. Imag. & Vis. 2017 | Medical Imaging | ||
Automatic Reporting of Lesion Location in Mammograms | G. Amit, E. Barkan, N. M. Shani, A. Zlotnick, M. D. Kovacs, J. J. Reicher, M. A. Trambert, M. A. Reicher | 2017 | Computer Assisted Radiology and Surgery (CARS), 2017 | Medical Imaging | ||
Hybrid Mass Detection in Breast MRI combining Unsupervised Saliency Analysis and Deep Learning | G. Amit et al | 2017 | MICCAI 2017 | Medical Imaging | ||
Classification of Breast MRI Lesions using Small-Size Training Sets: Comparison of Deep Learning Approaches | Amit, G., Ben-Ari, R., Hadad, O., Monovich, E., Granot, N. and Hashoul, S | 2017 | In SPIE Medical Imaging (pp. 101341H-101341H). International Society for Optics and Photonics. 2017, March | Medical Imaging | ||
Classification of Breast Lesions using Cross-Modal Deep Learning | O. Hadad, R. Bakalo, R. Ben-Ari, S. Hashoul, G. Amit | 2017 | ISBI 2017 | Medical Imaging | ||
Domain Specific Convolutional Neural Nets for Detection of Architectural Distortion in Mammograms | R. Ben-Ari, A. Akselrod-Ballin, L. Karlinsky, S. Hashoul | 2017 | ISBI 2017 | Medical Imaging | ||
Paradoxical Hypersusceptibility of Drug-resistant Mycobacteriumtuberculosis to β-lactam Antibiotics | Cohen KA, El-Hay T, Wyres KL, Weissbrod O, Munsamy V, Yanover C, Aharonov R, Shaham O, Conway TC, Goldschmidt Y, Bishai WR, Pym AS. | 2016 | EBioMedicine 2016 | Machine Learning | ||
Changing the approach to treatment choice in epilepsy using big data | Devinsky O, Dilley C, Ozery-Flato M, Aharonov R, Goldschmidt Y, Rosen-Zvi M, Clark C, Fritz P | 2016 | Epilepsy and Behavior, 2016 | Machine Learning | Selected Work | |
Global epidemiology of drug resistance following failure of WHO recommended first line regimens for adult HIV-1 infection - an international collaborative study | Gregson J. et al The TenoRes Study Group | 2016 | Lancet Infectious Diseases, 2016 | Machine Learning | ||
Identifying and Investigating Unexpected Response to Treatment: A Diabetes Case Study | Michal Ozery-Flato, Liat Ein-Dor, Naama Parush-Shear-Yashuv, Ranit Aharonov, Hani Neuvirth, Martin S. Kohn, and Jianying Hu.. | 2016 | BigData2016 | Machine Learning | ||
Driver gene classification reveals a substantial overrepresentation of tumor suppressors among very large chromatin-regulating proteins | Zeev Waks, Omer Weissbrod, Boaz Carmeli, Raquel Norel, Filippo Utro, Yaara Goldschmidt. | 2016 | Scientific Reports 6, 2016, Article number: 38988, 2016 | Machine Learning | ||
A Novel Computational Tool for Mining Real-Life Data: Application in the Metastatic Colorectal Cancer Care Setting | Siegelmann-Danieli, Farkash, Katzir, Vesterman Landes, Rotem Rabinovich, Lomnicky, Carmeli, Parush-Shear-Yashuv. | 2016 | Plos One 2016 | Machine Learning | ||
Healthcare innovations and improvements in a financially constrained environment | The WE CARE consortium. Inger Ekman, Reinhard Busse, Ewout van Ginneken, Chris Van Hoof, Linde van Ittersum,Ab Klink, Jan A. Kremer, Marisa Miraldo, Anders Olauson, Walter De Raedt, Michal Rosen-Zvi, Valentina Strammiello, Jan Törnell, Karl Swedberg, | 2016 | Volume 387, No. 10019, p646–647, 2016 | Machine Learning | ||
Medical sieve: a cognitive assistant for radiologists and cardiologists | Syeda-Mahmood, T.; Walach, E.; Beymer, D.; Gilboa-Solomon, F.; Moradi, M.; Kisilev, P.; Kakrania, D.; Compas, C.; Wang, H.; Negahdar, R.; Cao, Y.; Baldwin, T.; Guo, Y.; Gur, Y.; Rajan, D.; Zlotnick, A.; Rabinovici-Cohen, S.; Ben-Ari, R.; Guy, Amit; Prasanna, P.; Morey, J.; Boyko, O.; Hashoul, S. | 2016 | Medical Imaging 2016: Computer-Aided Diagnosis | Medical Imaging | ||
Medical image description using multi-task-loss CNN | P. Kisilev, E. Sason, S. Hashoul, E. Barkan, E. Walach | 2016 | MICCAI DLMIA | Medical Imaging | ||
Recognizing Architectural Distortion in Mammogram using pre-trained DNN | R. Ben-Ari and S. Hashoul | 2016 | IBM Deep Learning Workshop, 2016 | Medical Imaging | ||
Efficacy of an Automatic Decision Support System in Facilitating Diagnosis of Breast Diseases | S. Hashoul, E. Walach, E. Barkan, P. Kisilev, S. Alpert, G. Amit and A. Khateeb | 2016 | European Congress of Radiology,2016 | Medical Imaging | ||
A Weakly Labeled Approach for Breast Tissue Segmentation and Breast Density Estimation in Digital Mammography | R. Ben-Ari, A. Zlotnick and S. Hashoul | 2016 | ISBI 2016 | Medical Imaging | ||
NuC-MKL: A Convex Approach to Non Linear Multiple Kernel Learning | P. Kisilev and E. Meirom | 2016 | AISTATS 2016 | Medical Imaging | ||
Semantic Object Boundary Detection Using Convolutional Neural Networks with Regression Output | P. Kisilev and E. Sason | 2016 | IBM Deep Learning Workshop, 2016 | Medical Imaging | ||
A Region Based Convolutional Network for Tumor Detection and Classification in Breast Mammography | A. Akselrod-Balin, L. Karlinsky, S. Alpert, S. Hashoul, R. Ben-Ari and E. Barkan | 2016 | MICCAI DLMIA workshop, 2016 | Medical Imaging | ||
Learning to describe medical images using multi-task-loss CNN | P. Kisilev, E. Sason, S. Hashoul and E. Barkan | 2016 | ECML, 2016 | Medical Imaging | ||
Efficacy of an Automatic Decision Support System in Facilitating Diagnosis of the Thyroid Diseases | S. Hashoul, E. Walach, A. Khateeb, A. Walach, G. Amit, R. Ben-Ari, E. Barkan and P. Kisilev | 2016 | RSNA, 2016 | Medical Imaging | ||
Medical image description using multi-task-loss CNN | P. Kisilev, E. Sason, S. Hashoul and E. Barkan | 2016 | MICCAI DLMIA workshop, 2016 | Medical Imaging | ||
A system for identifying and investigating unexpected response to treatment | Michal Ozery-Flato, Liat Ein-Dor, Hani Neuvirth, Naama Parush, Martin S. Kohn, Jianying Hu, and Ranit Aharonov, | 2015 | AMIA Jt Summits Transl Sci Proc. 137–141. 2015 | Machine Learning | ||
A Cross Saliency Approach to Asymmetry Based Tumor Detection | M. Erichov, S. Alpert ,P. Kisilev and S. Hashoul | 2015 | MICCAI 2015 | Medical Imaging | ||
Automatic Dual-View Mass Detection in Full-Field Digital Mammograms, | G. Amit, S. Hashoul, P. Kisilev, B. Ophir, E. Walach, A. Zlotnick | 2015 | MICCAI 2015 | Medical Imaging | ||
Shape from Focus with Adaptive Focus Measure and High Order Derivatives | Y. Frommer, R. Ben-Ari and N. Kiryati | 2015 | BMVC 2015 | Medical Imaging | ||
Semantic Description of Medical Image Findings: Structured Learning Approach | P. Kisilev, E. Walach, S. Hashoul, E. Barkan, B. Ophir and S. Alpert | 2015 | BMVC 2015 | Medical Imaging | ||
Computational Mammography using Deep Neural Networks, Deep Learning Workshop | A. Dubrovina, P. Kisilev, B. Ginsburg, S. Hashoul, and R. Kimmel | 2015 | MICCAI 2015 | Medical Imaging | ||
Hybrid Unsupervised-Supervised Lesion Detection in Mammograms | A. Zlotnick, B. Ophir and P. Kisilev | 2015 | SPIE MI 2015 | Medical Imaging | ||
From Medical Image to Automatic Medical Report Generation | P. Kisilev, E. Walach, E. Barkan, B. Ophir, S. Alpert and S. Hashoul | 2015 | IBM Research Journal | Medical Imaging | ||
Automated Planning of Breast Radiotherapy using Cone Beam CT Imaging | G. Amit and T. G. Purdie | 2015 | Medical Physics 42(2), 770-779, 2015 | Medical Imaging | ||
Automatic learning-based beam angle selection for thoracic IMRT | G. Amit, T. G. Purdie, A. Levinshtein, A. J. Hope, P. Lindsay, A. Marshall, D. A Jaffray and V. Pekar | 2015 | Medical Physics 42(4), 1992-2005, 2015 | Medical Imaging | ||
Self-contained Information Retention Format (SIRF) | S. Rabinovici-Cohen, M. Baker, R. Cumming, S. Fineberg and P. Viana | 2015 | SNIA Public Review 2015 | Medical Imaging |
AI Publications
Title | Author | Year | Conference/Journal | Focus | |
---|---|---|---|---|---|
A New Data Augmentation Method for Intent Classification Enhancement and its Application on Spoken Conversation Datasets | Zvi Kons, Aharon Satt, Hong-Kwang Kuo, Samuel Thomas, Boaz Carmeli, Ron Hoory, Brian Kingsbury | 2022 | ICASSP 2022 | Speech, NLP | Link |
Towards a Common Speech Analysis Engine | Hagai Aronowitz, Itai Gat, Edmilson Morais, Weizhong Zhu, Ron Hoory | 2022 | ICASSP 2022 | Speech | Link |
Speaker Normalization for Self-Supervised Speech Emotion Recognition | Itai Gat, Weizhong Zhu, Edmilson Morais, Ron Hoory, Hagai Aronowitz | 2022 | ICASSP 2022 | Speech | Link |
Speech Emotion Recognition Using Self-Supervised Features | Edmilson Morais, Ron Hoory, Weizhong Zhu, Itai Gat, Matheus Damasceno and Hagai Aronowitz | 2022 | ICASSP 2022 | Speech | Link |
Classifier Data Quality: A Geometric Complexity Based Method for Automated Baseline And Insights Generation. | George Kour, Marcel Zalmanovici, Orna Raz, Samuel Ackerman, Ateret Anaby-Tavor . | 2022 | AAAI, EDSMLS 2022. | NLP, AI Quality | Link |
Detecting model drift using polynomial relations. | Eliran Roffe, Samuel Ackerman, Orna Raz, Eitan Farchi. | 2022 | AAAI, EDSMLS 2022. | AI Quality | Link |
Acquiring conversational speaking style from multi-speaker spontaneous dialog corpus for prosody-controllable sequence-to-sequence speech synthesis | A. Ben-David, S. Shechtman | 2021 | SSW 2021 | Speech | Link |
Synthesis of expressive speaking styles with limited training data in a multi-speaker, prosody-controllable sequence-to-sequence architecture | S. Shechtman, R. Fernandez, A. Sorin, D. Haws | 2021 | Interspeech 2021 | Speech | Link |
Stable Checkpoint Selection and Evaluation in Sequence-to-Sequence Speech Synthesis | S. Shechtman, D. Haws, R. Fernandez | 2021 | ICASSP 2021 | Speech | Link |
RNN Transducer Models for Spoken Language Understanding | Samuel Thomas, Jeff Kuo, George Saon, Zoltan Tuske, Gakuto Kurata, Zvi Kons, Ron Hoory, Brian Kingsbury | 2021 | ICASSP 2021 | Speech | Link |
Supervised and Unsupervised Approaches for Controlling Narrow Lexical Focus in Sequence-to-Sequence Speech Synthesis | S. Shechtman, R. Fernandez, D. Haws | 2021 | SLT 2021 | Speech | |
Elad Amrani, Rami Ben-Ari, Daniel Rotman, Alex Bronstein | Noise Estimation Using Density Estimation for Self-Supervised Multimodal Learning | 2021 | AAAI Conference on Artificial Intelligence | Vision | Link |
Rami Ben-Ari, Mor Shpigel, Ophir Azulai, Udi Barzelay, Daniel Rotman | TAEN: Temporal Aware Embedding Network for Few-Shot Action Recognition | 2021 | Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition | Vision | Link |
Daniel Rotman, Ophir Azulai, Inbar Shapira, Yevgeny Burshtein, Udi Barzelay | Detection Masking for Improved OCR on Noisy Documents | 2021 | DI-2021: The Second Document Intelligence Workshop at KDD 2021 | Vision | Link |
Fine-grained Angular Contrastive Learning with Coarse Labels | Guy Bukchin, Eli Schwartz, Kate Saenko, Ori Shahar, Rogerio Feris, Raja Giryes, Leonid Karlinsky | 2021 | CVPR | Vision | Link |
StarNet: towards weakly supervised few-shot detection and explainable few-shot classification | Leonid Karlinsky*, Joseph Shtok*, Amit Alfassy*, Moshe Lichtenstein*, Sivan Harary, Eli Schwartz, Sivan Doveh, Prasanna Sattigeri, Rogerio Feris, Alexander Bronstein, Raja Giryes | 2021 | AAAI | Vision | Link |
MetAdapt: Meta-Learned Task-Adaptive Architecture for Few-Shot Classification | Sivan Doveh, Eli Schwartz, Chao Xue, Rogerio Feris, Alex Bronstein, Raja Giryes, Leonid Karlinsky | 2021 | Pattern Recognition Letters | Vision | Link |
Dynamic Distillation Network for Cross-Domain Few-Shot Recognition with Unlabeled Data | A Islam, CF Chen, R Panda, L Karlinsky, R Feris, RJ Radke | 2021 | NeurIPS | Vision | Link |
Detector-Free Weakly Supervised Grounding by Separation | Assaf Arbelle, Sivan Doveh, Amit Alfassy, Joseph Shtok, Guy Lev, Eli Schwartz, Hilde Kuehne, Hila Barak Levi, Prasanna Sattigeri, Rameswar Panda, Chun-Fu Chen, Alex Bronstein, Kate Saenko, Shimon Ullman, Raja Giryes, Rogerio Feris, Leonid Karlinsky | 2021 | ICCV | Vision | Link |
A Broad Study on the Transferability of Visual Representations with Contrastive Learning | Ashraful Islam, Chun-Fu Chen, Rameswar Panda, Leonid Karlinsky, Richard Radke, Rogerio Feris | 2021 | ICCV | Vision | Link |
Adafuse: Adaptive temporal fusion network for efficient action recognition | Yue Meng, Rameswar Panda, Chung-Ching Lin, Prasanna Sattigeri, Leonid Karlinsky, Kate Saenko, Aude Oliva, Rogerio Feris | 2021 | ICLR | Vision | Link |
CHARTER: heatmap-based multi-type chart data extraction | Joseph Shtok, Sivan Harary, Ophir Azulai, Adi Raz Goldfarb, Assaf Arbelle, Leonid Karlinsky | 2021 | KDD DIW | Vision | |
Density-based interpretable hypercube region partitioning for mixed numeric and categorical data. | Samuel Ackerman, Eitan Farchi, Orna Raz, Marcel Zalmanovici, Maya Zohar. | 2021 | JSM 2021. | AI Quality | Link |
Machine Learning Model Drift Detection Via Weak Data Slices. | Samuel Ackerman, Parijat Dube, Eitan Farchi, Orna Raz, Marcel Zalmanovici. | 2021 | ICSE, DeepTest 2021. | AI Quality | Link |
An Autonomous Debating System | Noam Slonim, Yonatan Bilu, Carlos Alzate, Roy Bar-Haim, Ben Bogin, Francesca Bonin, Leshem Choshen, Edo Cohen-Karlik, Lena Dankin, Lilach Edelstein, Liat Ein-Dor, Roni Friedman-Melamed, Assaf Gavron, Ariel Gera, Martin Gleize, Shai Gretz, Dan Gutfreund, Alon Halfon, Daniel Hershcovich, Ron Hoory, Yufang Hou, Shay Hummel, Michal Jacovi, Charles Jochim, Yoav Kantor, Yoav Katz, David Konopnicki, Zvi Kons, Lili Kotlerman, Dalia Krieger, Dan Lahav, Tamar Lavee, Ran Levy, Naftali Liberman, Yosi Mass, Amir Menczel, Shachar Mirkin, Guy Moshkowich, Shila Ofek-Koifman, Matan Orbach, Ella Rabinovich, Ruty Rinott, Slava Shechtman, Dafna Sheinwald, Eyal Shnarch, Ilya Shnayderman, Aya Soffer, Artem Spector, Benjamin Sznajder, Assaf Toledo, Orith Toledo-Ronen, Elad Venezian and Ranit Aharonov | 2021 | Nature | NLP | |
Project Debater APIs: Decomposing the AI Grand Challenge | Roy Bar-Haim, Yoav Kantor, Elad Venezian, Yoav Katz and Noam Slonim | 2021 | EMNLP (Demo) | NLP | |
Advances in Debating Technologies: Building AI That Can Debate Humans | Roy Bar-Haim, Liat Ein-Dor, Matan Orbach, Elad Venezian, Noam Slonim | 2021 | ACL (Tutorial) | NLP | |
YASO: A Targeted Sentiment Analysis Evaluation Dataset for Open-Domain Reviews | Matan Orbach, Orith Toledo-Ronen, Artem Spector, Ranit Aharonov, Yoav Katz, Noam Slonim | 2021 | EMNLP | NLP | |
Every Bite Is an Experience: Key Point Analysis of Business Reviews | Roy Bar-Haim, Lilach Eden, Yoav Kantor, Roni Friedman, Noam Slonim | 2021 | ACL | NLP | |
AI-Assisted Security Controls Mapping for Clouds Built for Regulated Workloads | Vikas Agarwal, Roy Bar-Haim, Lilach Eden, Nisha Gupta, Yoav Kantor and Arun Kumar | 2021 | CLOUD | NLP | |
Overview of the 2021 Key Point Analysis Shared Task | Roni Friedman, Lena Dankin, Yufang Hou, Ranit Aharonov, Yoav Katz and Noam Slonim | 2021 | ArgMining @ EMNLP | NLP | |
Summary Grounded Conversation Generation | Chulaka Gunasekara, Guy Feigenblat, Benjamin Sznajder, Sachindra Joshi, David Konopnicki | 2021 | Findings of ACL | NLP | |
We've had this conversation before: A Novel Approach to Measuring Dialog Similarity | Ofer Lavi, Ella Rabinovich, Segev Shlomov, David Boaz, Inbal Ronen, Ateret Anaby Tavor | 2021 | EMNLP | NLP | |
Using Question Answering Rewards to Improve Abstractive Summarization | Chulaka Gunasekara, Guy Feigenblat, Benjamin Sznajder, Ranit Aharonov, Sachindra Joshi | 2021 | Findings of EMNLP | NLP | |
TWEETSUMM - A Large Scale Dialog Summarization Dataset for Customer Service | Guy Feigenblat, Chulaka Gunasekara, Benjamin Sznajder, Sachindra Joshi, David Konopnicki, Ranit Aharonov | 2021 | Findings of EMNLP | NLP | |
Elad Amrani, Rami Ben-Ari, Inbar Shapira, Tal Hakim, Alex Bronstein | Self-Supervised Object Detection and Retrieval Using Unlabeled Videos | 2020 | IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops | Vision | Link |
Yair Shemer, Daniel Rotman, Nahum Shimkin | ILS-SUMM: Iterated Local Search for Unsupervised Video Summarization | 2020 | International Conference on Pattern Recognition (ICPR) | Vision | Link |
Daniel Rotman, Yevgeny Yaroker, Elad Amrani, Udi Barzelay, Rami Ben-Ari | Learnable Optimal Sequential Grouping for Video Scene Detection | 2020 | ACM Multimedia | Vision | Link |
Ar-net: Adaptive frame resolution for efficient action recognition Authors | Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri, Leonid Karlinsky, Aude Oliva, Kate Saenko, Rogerio Feris | 2020 | ECCV | Vision | Link |
OnlineAugment: Online data augmentation with less domain knowledge | Zhiqiang Tang, Yunhe Gao, Leonid Karlinsky, Prasanna Sattigeri, Rogerio Feris, Dimitris Metaxas | 2020 | ECCV | Vision | Link |
TAFSSL: Task-Adaptive Feature Sub-Space Learning for few-shot classification | Moshe Lichtenstein, Prasanna Sattigeri, Rogerio Feris, Raja Giryes, Leonid Karlinsky | 2020 | ECCV | Vision | Link |
A broader study of cross-domain few-shot learning | Yunhui Guo, Noel C Codella, Leonid Karlinsky, James V Codella, John R Smith, Kate Saenko, Tajana Rosing, Rogerio Feris | 2020 | ECCV | Vision | Link |
A Maximal Correlation Approach to Imposing Fairness in Machine Learning | Joshua Lee, Yuheng Bu, Prasanna Sattigeri, Rameswar Panda, Gregory Wornell, Leonid Karlinsky, Rogerio Feris | 2020 | arXiv preprint arXiv:2012.15259 | Vision | Link |
New Advances in Speaker Diarization | H. Aronowitz, W. Zhu, M. Suzuki, G. Kurata, R. Hoory | 2020 | Interspeech 2020 | Speech | Link |
Siamese X-Vector Reconstruction for Domain Adapted Speaker Recognition | S. Rozenberg, H. Aronowitz, R. Hoory | 2020 | Interspeech 2020 | Speech | Link |
Principal Style Components: Expressive Style Control and Cross-Speaker Transfer in Neural TTS | A. Sorin, S. Shechtman, R. Hoory | 2020 | Interspeech 2020 | Speech | Link |
End-to-End Spoken Language Understanding without Full Transcripts | H. Kuo, Z. Tuske, S. Thomas, Y. Huang, K. Audhkhasi , B. Kingsbury, G. Kurata, Z. Kons, R. Hoory, L. Lastras | 2020 | Interspeech 2020 | Speech | Link |
Leveraging Unpaired Text Data for Training End-to-End Speech-to-Intent Systems | Y. Huang, H. Kuo, S. Thomas, Z. Kons, K. Audhkhasi, B. Kingsbury, R. Hoory, M. Picheny | 2020 | ICASSP 2020 | Speech | Link |
Context and Uncertainty Modeling for Online Speaker Change Detection | H. Aronowitz, W. Zhu | 2020 | ICASSP 2020 | Speech | Link |
Detection of data drift and outliers affecting machine learning model performance over time. | Samuel Ackerman, Eitan Farchi, Orna Raz, Marcel Zalmanovici, Parijat Dube | 2020 | JSM Proceedings, Nonparametric Statistics Section, 2020. | AI Quality | Link |
FreaAI: Automated extraction of data slices to test machine learning models. | Samuel Ackerman, Orna Raz, Marcel Zalmanovici. | 2020 | AAAI, EDSMLS 2020. | AI Quality | Link |
Quantitative Argument Summarization and Beyond: Cross-Domain Key Point Analysis | Roy Bar-Haim, Yoav Kantor, Lilach Eden, Roni Friedman, Dan Lahav, Noam Slonim | 2020 | EMNLP | NLP | |
Multilingual Argument Mining: Datasets and Analysis | Orith Toledo-Ronen, Matan Orbach, Yonatan Bilu, Artem Spector and Noam Slonim | 2020 | Findings of EMNLP | NLP | |
The workweek is the best time to start a family - A Study of GPT-2 Based Claim Generation | Shai Gretz, Yonatan Bilu, Edo Cohen-Karlik, Noam Slonim | 2020 | Findings of EMNLP | NLP | |
Active Learning for BERT: An Empirical Study | Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch, Lena Dankin, Leshem Choshen, Marina Danilevsky, Ranit Aharonov, Yoav Katz and Noam Slonim | 2020 | EMNLP | NLP | |
Unsupervised Expressive Rules Provide Explainability and Assist Human Experts Grasping New Domains | Eyal Shnarch, Leshem Choshen, Guy Moshkowich, Noam Slonim and Ranit Aharonov | 2020 | Findings of EMNLP | NLP | |
Out of the Echo Chamber: Detecting Countering Debate Speeches | Matan Orbach, Yonatan Bilu, Assaf Toledo, Dan Lahav, Michal Jacovi, Ranit Aharonov, Noam Slonim | 2020 | ACL | NLP | |
From Arguments to Key Points: Towards Automatic Argument Summarization | Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav Kantor, Dan Lahav, Noam Slonim | 2020 | ACL | NLP | |
A Large-scale Dataset for Argument Quality Ranking: Construction and Analysis | Shai Gretz, Roni Friedman, Edo Cohen-Karlik, Assaf Toledo, Dan Lahav, Ranit Aharonov and Noam Slonim | 2020 | AAAI | NLP | |
Corpus wide argument mining - a working solution | Liat Ein-Dor, Eyal Shnarch, Lena Dankin, Alon Halfon, Benjamin Sznajder, Ariel Gera, Carlos Alzate, Martin Gleize, Leshem Choshen, Yufang Hou, Yonatan Bilu, Ranit Aharonov and Noam Slonim | 2020 | AAAI | NLP | |
Agent Assist through Conversation Analysis | Kshitij Fadnis, Nathaniel Mills, Jatin Ganhotra, Haggai Roitman, Gaurav Pandey, Doron Cohen, Yosi Mass, Shai Erera, Chulaka Gunasekara, Danish Contractor, Siva Patel, Q. Vera Liao, Sachindra Joshi, Luis Lastras, David Konopnicki | 2020 | EMNLP (Demo) | NLP | |
Conversational Document Prediction to Assist Customer Care Agents | Jatin Ganhotra, Haggai Roitman, Doron Cohen, Nathaniel Mills, Chulaka Gunasekara, Yosi Mass, Sachindra Joshi, Luis Lastras, David Konopnicki | 2020 | EMNLP | NLP | |
Ad-hoc Document Retrieval using Weak-Supervision with BERT and GPT2 | Yosi Mass, Haggai Roitman | 2020 | EMNLP | NLP | |
Balancing via Generation for Multi-Class Text Classification Improvement | Naama Tepper, Esther Goldbraich, Naama Zwerdling, George Kour, Ateret Anaby Tavor, Boaz Carmeli | 2020 | Findings of EMNLP | NLP | |
Unsupervised FAQ Retrieval with Question Generation and BERT | Yosi Mass, Boaz Carmeli, Haggai Roitman, David Konopnicki | 2020 | ACL | NLP | |
Not Enough Data? Deep Learning to the Rescue! | Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George Kour, Segev Shlomov, Naama Tepper, Naama Zwerdling | 2020 | AAAI | NLP | |
Improving Task-Oriented Dialogue Systems In Production with Conversation Logs | Alon Jacovi, Ori Bar El, Ofer Lavi, David Boaz, David Amid, Inbal Ronen, Ateret Anaby Tavor | 2020 | KDD Converse | NLP | |
Financial Event Extraction Using Wikipedia-Based Weak Supervision | Liat Ein-Dor, Ariel Gera, Orith Toledo-Ronen, Alon Halfon, Benjamin Sznajder, Lena Dankin, Yonatan Bilu, Yoav Katz, Noam Slonim | 2019 | ECONLP @ EMNLP | NLP | |
Crowd-sourcing annotation of complex NLU tasks: A case study of argumentative content annotation | Tamar Lavee, Lili Kotlerman, Matan Orbach, Yonatan Bilu, Michal Jacovi, Ranit Aharonov, Noam Slonim | 2019 | AnnoNLP @ EMNLP (2019) | NLP | |
Automatic Argument Quality Assessment - New Datasets and Methods | Assaf Toledo, Shai Gretz, Edo Cohen-Karlik, Roni Friedman, Elad Venezian, Dan Lahav, Michal Jacovi, Ranit Aharonov, Noam Slonim | 2019 | EMNLP | NLP | |
A Dataset of General-Purpose Rebuttal | Matan Orbach, Yonatan Bilu, Ariel Gera, Yoav Kantor, Lena Dankin, Tamar Lavee, Lili Kotlerman, Shachar Mirkin, Michal Jacovi, Ranit Aharonov, Noam Slonim | 2019 | EMNLP | NLP | |
Towards Effective Rebuttal: Listening Comprehension using Corpus-Wide Claim Mining | Tamar Lavee, Matan Orbach, Lili Kotlerman, Yoav Kantor, Shai Gretz, Lena Dankin, Michal Jacovi, Yonatan Bilu, Ranit Aharonov, Noam Slonim | 2019 | ArgMining @ ACL | NLP | |
From Surrogacy to Adoption; From Bitcoin to Cryptocurrency: Debate Topic Expansion | Roy Bar-haim, Dalia Krieger, Orith Toledo-ronen, Lilach Edelstein, Yonatan Bilu, Alon Halfon, Yoav Katz, Amir Menczel, Ranit Aharonov, Noam Slonim | 2019 | ACL | NLP | |
Argument Invention from First Principles | Yonatan Bilu, Ariel Gera, Daniel Hershcovich, Benjamin Sznajder, Dan Lahav, Guy Moshkowich, Anael Malet, Assaf Gavron, Noam Slonim | 2019 | ACL | NLP | |
Are You Convinced? Choosing the More Convincing Evidence with a Siamese Network | Martin Gleize, Eyal Shnarch, Leshem Choshen, Lena Dankin, Guy Moshkowich, Ranit Aharonov, Noam Slonim | 2019 | ACL | NLP | |
Syntactic interchangeability in word embedding models | Daniel Hershcovich, Assaf Toledo, Alon Halfon, Noam Slonim | 2019 | Workshop on Evaluating Vector Space Representations for NLP@NAACL | NLP | |
TalkSumm: A Dataset and Scalable Annotation Method for Scientific Paper Summarization Based on Conference Talk | Guy Lev, Michal Shmueli-Scheuer, Jonathan Herzig, Achiya Jerbi, and David Konopnicki | 2019 | ACL | NLP | |
A Summarization System for Scientific Documents | Shai Erera, Michal Shmueli-Scheuer, Guy Feigenblat, Ora Peled Nakash, Odellia Boni, Haggai Roitman, Doron Cohen, Bar Weiner, Yosi Mass, Or Rivlin, Guy Lev, Achiya Jerbi, Jonathan Herzig, Yufang Hou, Charles Jochim, Martin Gleize, Francesca Bonin, Francesca Bonin, David Konopnicki | 2019 | EMNLP (Demo) | NLP | |
Automatically detecting data drift in machine learning classifiers. | Samuel Ackerman, Orna Raz, Marcel Zalmanovici, Aviad Zlotnick . | 2019 | AAAI, EDSMLS 2019. | AI Quality | Link |
High quality, lightweight and adaptable TTS using LPCNet | Z. Kons, S. Shechtman, A. Sorin, C. Rabinovitz, R. Hoory | 2019 | Interspeech 2019 | Speech | Link |
Sequence to Sequence Neural Speech Synthesis with Prosody Modification Capabilities | S. Shechtman, A. Sorin | 2019 | SSW 2019 | Speech | Link |
Daniel Rotman, Dror Porat, Yevgeny Burshtein, Udi Barzelay | Temporal Video Analyzer (TVAN): Efficient Temporal Video Analysis for Robust Video Description and Search | 2019 | AAAI Conference on Artificial Intelligence | Vision | Link |
Elad Amrani, Rami Ben-Ari, Tal Hakim, Alex Bronstein | Learning to Detect and Retrieve Objects From Unlabeled Videos | 2019 | IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) | Vision | Link |
Baby steps towards few-shot learning with multiple semantics | Eli Schwartz*, Leonid Karlinsky*, Rogerio Feris, Raja Giryes, Alex M Bronstein | 2019 | arXiv preprint arXiv:1906.01905 | Vision | Link |
A CNN based method for automatic mass detection and classification in mammograms | Ayelet Akselrod-Ballin, Leonid Karlinsky, Sharon Alpert, Sharbell Hashoul, Rami Ben-Ari, Ella Barkan | 2019 | Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization (CMBBE) | Vision | |
Repmet: Representative-based metric learning for classification and few-shot object detection | Leonid Karlinsky*, Joseph Shtok*, Sivan Harary*, Eli Schwartz*, Amit Aides, Rogerio Feris, Raja Giryes, Alex M Bronstein | 2019 | CVPR | Vision | Link |
Laso: Label-set operations networks for multi-label few-shot learning | Amit Alfassy*, Leonid Karlinsky*, Amit Aides, Joseph Shtok, Sivan Harary, Rogerio Feris, Raja Giryes, Alex M Bronstein | 2019 | CVPR | Vision | Link |
Bridging the gap between ML solutions and their business requirements using combinatorial testing. | Guy Barash, Eitan Farchi, Ilan Jayaraman, Orna Raz, Rachel Tzoref-Brill, Marcel Zalmanovici. | 2019 | FSE’19. | AI Quality | Link |
Governance and Regulations Implications on Machine Learning | Sima Nadler, Orna Raz, and Marcel Zalmanovici | 2019 | CSCML’19 | AI Quality | |
Optimizing hierarchical classification with adaptive nodes collapse | Sujan Perera, Orna Raz, Ramani Routray, Shenghua Bao, Marcel Zalmanovici | 2019 | EDSMLS’19 | AI Quality | |
Proactive and Pervasive Combinatorial Testing | Dale Blue, Orna Raz, Rachel Tzoref-Brill, Paul Wojciak, and Marcel Zalmanovici | 2018 | International Conference on Software Engineering | AI Quality | |
Neural TTS Voice Conversion | Z. Kons, S. Shechtman, A. Sorin, R. Hoory, C. Rabinovitz, E. Da Silva Morais | 2018 | SLT 2018 | Speech | Link |
Word Emphasis Prediction for Expressive Text to Speech | Y. Mass, S. Shechtman, M. Mordechai, R. Hoory, O. Sar Shalom, G. Lev, D. Konopnicki | 2018 | Interspeech 2018 | Speech | Link |
The IBM Virtual Voice Creator | A. Sorin, S. Shechtman, Z. Kons, R. Hoory, S. Ben-David, J. Pavitt, S. Rozenberg, C. Rabinovitz, T. Drory | 2018 | Interspeech 2018 (Show & Tell demo) | Speech | Link |
Robust Audiovisual Liveness Detection for Biometric Authentication Using Deep Joint Embedding and Dynamic Time Warping | A. Aides, D. Dov. H. Aronowitz | 2018 | ICASSP 2018 | Speech | Link |
Emphatic Speech Prosody Prediction with Deep LSTM Networks | S. Shechtman, M. Mordechay | 2018 | ICASSP 2018 | Speech | Link |
Daniel Rotman, Dror Porat, Gal Ashour, Udi Barzelay | Optimally Grouped Deep Features Using Normalized Cost for Video Scene Detection | 2018 | ACM International Conference on Multimedia Retrieval (ICMR) | Vision | Link |
Co-regularized alignment for unsupervised domain adaptation | Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerio Feris, Bill Freeman, Gregory Wornell | 2018 | NeurIPS | Vision | Link |
Delta-encoder: an effective sample synthesis method for few-shot object recognition | Eli Schwartz*, Leonid Karlinsky*, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar, Rogerio Feris, Raja Giryes, Alex Bronstein | 2018 | NeurIPS | Vision | Link |
Domain specific convolutional neural nets for detection of architectural distortion in mammograms | Rami Ben-Ari, Ayelet Akselrod-Ballin, Leonid Karlinsky, Sharbell Hashoul | 2017 | ISBI | Vision | Link |
Fine-grained recognition of thousands of object categories with single-example training | Leonid Karlinsky, Joseph Shtok, Yochay Tzur, Asaf Tzadok | 2017 | CVPR | Vision | Link |
Hybrid remote expert-an emerging pattern of industrial remote support | Ethan Hadar, Joseph Shtok, Benjamin Cohen, Yochay Tzur, Leonid Karlinsky | 2017 | CAISE 2017 | Vision | Link |
Deep learning for automatic detection of abnormal findings in breast mammography | Ayelet Akselrod-Ballin, Leonid Karlinsky, Alon Hazan, Ran Bakalo, Ami Ben Horesh, Yoel Shoshan, Ella Barkan | 2017 | Deep learning in medical image analysis and multimodal learning for clinical decision support | Vision | |
Daniel Rotman, Dror Porat, Gal Ashour | Optimal Sequential Grouping for Robust Video Scene Detection Using Multiple Modalities | 2017 | International Journal of Semantic Computing | Vision | Link |
Daniel Rotman, Dror Porat, Gal Ashour | Robust Video Scene Detection Using Multimodal Fusion of Optimally Grouped Features | 2017 | IEEE 19th International Workshop on Multimedia Signal Processing (MMSP) | Vision | Link |
The I4U Mega Fusion and Collaboration for NIST Speaker Recognition Evaluation 2016 | K. A. Lee, V. Hautam¨aki, T. Kinnunen, A. Larcher, C. Zhang, A. Nautsch, T. Stafylakis, G. Liu, M. Rouvier, W. Rao, F. Alegre, J. Ma, M. W. Mak, A. K. Sarkar, H. Delgado, R. Saeidi, H. Aronowitz, et al | 2017 | Interspeech 2017 | Speech | Link |
Semi Parametric Concatenative TTS with Instant Voice Modification Capabilities | A. Sorin, S. Shechtman, A. Rendel | 2017 | Interspeech 2017 | Speech | Link |
Efficient Emotion Recognition from Speech Using Deep Learning on Spectrograms | A. Satt, S. Rozenberg, R. Hoory | 2017 | Interspeech 2017 | Speech | Link |
Weakly-Supervised Phrase Assignment from Text in a Speech-Synthesis System Using Noisy Labels | A. Rendel, R. Fernandez, Z. Kons, A. Rosenberg, R. Hoory, B. Ramabhadran | 2017 | Interspeech 2017 | Speech | Link |
Voice-Transformation-Based Data Augmentation for Prosodic Classification | R. Fernandez, A. Rosenberg, A. Sorin, B. Ramabhadran, R. Hoory | 2017 | ICASSP 2017 | Speech | Link |
Speaker Recognition using Common Passphrases in RedDots | H. Aronowitz | 2017 | in Proc. ICASSP, 2017 | Speech | Link |
Inter Dataset Variability Modelling for Speaker Recognition | H. Aronowitz | 2017 | ICASSP 2017 | Speech | Link |
Daniel Rotman, Dror Porat, Gal Ashour | Robust and Efficient Video Scene Detection Using Optimal Sequential Grouping | 2016 | IEEE International Symposium on Multimedia | Vision | Link |
A region based convolutional network for tumor detection and classification in breast mammography | Ayelet Akselrod-Ballin, Leonid Karlinsky, Sharon Alpert, Sharbell Hasoul, Rami Ben-Ari, Ella Barkan | 2016 | Deep learning and data labeling for medical applications (DLDL) | Vision | |
Deep Learning and Data Labeling for Medical Applications | A Akselrod-Ballin, L Karlinsky, S Alpert, S Hasoul, R Ben-Ari, E Barkan, G Carneiro | 2016 | Int. Work. Large-Scale Annot. Biomed. Data Expert Label Synth | Vision | |
Cluster-Based Test Suite Functional Analysis | Marcel Zalmanovici, Orna Raz and Rachel Tzoref-Brill | 2016 | Symposium on the Foundations of Software Engineering (ESEC/FSE) | AI Quality | |
Text-Dependent Audiovisual Synchrony Detection for Spoofing Detection in Mobile Person Recognition | A. Aides, H. Aronowitz | 2016 | Interspeech, 2016 | Speech | Link |
Wideband Harmonic Model: Alignment and Noise Modeling for High Quality Speech Synthesis | S. Shechtman, A. Sorin | 2016 | 9th ISCA Speech Synthesis Workshop, 2016 | Speech | Link |
Reducing Noise Bias in the i-Vector Space for Speaker Recognition | Y. Solewicz, H. Aronowitz, T. Becker | 2016 | Speaker Oddysey, 2016 | Speech | Link |
Using Continuous Lexical Embeddings to Improve Symbolic-Prosody Prediction in a Text-to-Speech Front-End | A. Rendel, R. Fernandez, R. Hoory, B. Ramabhadran | 2016 | ICASSP, 2016 | Speech | Link |
Speaker Recognition using Matched Filters | H. Aronowitz | 2016 | ICASSP, 2016 | Speech | Link |
Audio Enhancing with DNN Autoencoders for Speaker Recognition | O.Plchot, L. Burget, H. Aronowitz, P. Majetka | 2016 | ICASSP, 2016 | Speech | Link |
Using Deep Bidirectional Recurrent Neural Networks for Prosodic-Target Prediction in a Unit-Selection Text-to-Speech System | R. Fernandez, A. Rendel, B. Ramabhadran, R. Hoory | 2015 | Interspeech, 2015 | Speech | Link |
Exploiting Supervector Structure for Speaker Recognition Trained on a Small Development Set | H. Aronowitz | 2015 | Interspeech, 2015 | Speech | Link |
Score Stabilization for Speaker Recognition Trained on a Small Development Set | H. Aronowitz | 2015 | Interspeech, 2015 | Speech | |
The RedDots Data Collection for Speaker Recognition | K.A. Lee, A. Larcher, G.Wang, P. Kenny, N. Brummer, D. van Leeuwen, H. Aronowitz, M. Kockmann, C. Vaquero, B. Ma, H. Li, T. Stafylakis, J. Alam, A. Swart, J. Perez | 2015 | Interspeech, 2015 | Speech | Link |
Coherent Modification of Pitch and Energy for Expressive Prosody Implantation | A. Sorin, S. Shechtman, V. Pollet | 2015 | ICASSP, 2015 | Speech | Link |
Chung-Ching Lin, Sharath Pankanti, Gal Ashour, Dror Porat, John R. Smith | Moving camera analytics: Emerging scenarios, challenges, and applications | 2015 | IBM Journal of Research and Development | Vision | Link |
Hybrid Cloud Publications
Title | Author | Year | Conference/Journal | Focus |
---|---|---|---|---|
ClusterLink: A Multi-Cluster Application Interconnect | Kfir Toledo, Pravein Govindan Kannan, Michal Malka, Etai Lev-Ran, Katherine Barabash, Vita Bortnikov | 2023 | SYSTOR '23: 16th ACM International Conference on Systems and Storage | |
CloudPilot: Flow acceleration in the cloud | Kfir Toledo, David Breitgand, Dean Lorenz, Isaac Keslassy | 2023 | Computer Networks: The International Journal of Computer and Telecommunications Networking | |
A case for an open customizable cloud network | Kathy Barabash, David Breitgand, Etai Lev-Ran, Dean H. Lorenz, Danny Raz | 2022 | ACM SIGCOMM Computer Communication Review | |
DSON: JSON CRDT Using Delta-Mutations For Document Stores | Arik Rinberg, Tomer Solomon, Roee Shlomo, Guy Khazma, Gal Lushi, Idit Keidar, Paula Ta-Shma | 2022 | VLDB International Conference on Very Large Data Bases | |
ADEPTUS: Hybrid Anomaly Detection and Prioritization for Network Logs at Cloud Scale | David Ohana, Bruno Wassermann, Nicolas Dupuis, Hillel Kolodner, Eran Raichstein, Michal Malka | 2022 | EuroSys The European Conference on Computer Systems | |
CrawLabel: Computing Natural-Language Labels for UI Test Cases | Yu Liu, Rahulkrishna Yandrapally, Anup Kalia, Saurabh Sinha, Rachel Tzoref-Brill, Ali Mesbah | 2022 | ACM/IEEE International Conference on Automation of Software Test (AST) | |
TACKLETEST: A Tool for Amplifying Test Generation via Type-Based Combinatorial Coverage | Rachel Tzoref-Brill, Saurabh Sinha, Antonio Abu Nassar, Victoria Goldin, Haim Kermany | 2022 | IEEE International Conference on Software Testing, Verification and Validation (ICST) | |
Evaluating Cache performance using cloud storage traces | Effi Ofer | 2021 | SNIA SDC EMEA | |
Serverless Cloud Data Lake with Spark for Serving Weather Data | Torsten Steinbach, Paula Ta-Shma | 2021 | Subsurface: The Cloud Data Lake Conference | |
Load balancing with JET: just enough tracking for connection consistency | Gal Mendelson, Shay Vargaftik, Dean Lorenz, Katherine Barabash, Isaac Keslassy, Ariel Orda | 2021 | ACM International Conference on emerging Networking EXperiments and Technologies | |
Length Preserving Compression‚ Marrying Encryption with Compression | Doron Chen, Michael Factor, Ronen Kat, Danny Harnik, Eliad Tsfadia | 2021 | ACM International Systems and Storage Conference | |
Array CRDTs Using Delta-Mutations | Paula Ta-Shma, Gal Lushi, Guy Khazma, Roee Shlomo, Tomer Solomon, Arik Rinberg | 2021 | Workshop on Principles and Practice of Consistency for Distributed Data | |
Automatic scalable system for the coverage-directed generation (CDG) problem | R. Gal, E. Haber, W. Ibraheem, B. I. Z. Nevo, and A. Ziv | 2021 | DATE (Proceedings) | |
RAIDP: Replication with intra-disk parity | Eitan Rosenfeld , Nadav Amit, Dan Tsafrir, Aviad Zuck, Michael Factor | 2020 | EuroSys The European Conference on Computer Systems | |
It's time to revisit LRU versus FIFO | Ronen Kat, Effi Ofer, Ohad Eytan, Danny Harnik | 2020 | USENIX Workshop on Hot Topics in Storage and File Systems | |
Extensible Data Skipping | Paula Ta-Shma, Guy Khazma, Gal Lushi, Oshrit Feder | 2020 | IEEE International Conference on Big Data | |
Db2 Event Store: A Purpose-Built IoT Database Engine | Christian Garcia-Arellano, Hamdi Roumani, Richard Sidle, Josh Tiefenbach, Kostas Rakopoulos, Imran Sayyid, Adam Storm, Ronald Barber, Fatma Ozcan, Daniel Zilio, Alexander Cheung, Gidon Gershinsky, Hamid Pirahesh, David Kalmuk, Yuanyuan Tian, Matthew Spilchen, Lan Pham, Darren Pepper, Gal Lushi | 2020 | VLDB International Conference on Very Large Data Bases | |
The Verification Cockpit — A One-Stop Shop for Your Verification Data | Alia Shah Eugene Rotter Divya Joshi Raviv Gal Avi Ziv | 2020 | DVCon 2020 | |
Risk Analysis Based On Design Version Control Data | Raviv Gal, Gil Shurek, Giora Simchoni, Avi Ziv | 2019 | MLCAD 2019 | |
Clue: Evaluate the impact of your new training pipeline on existing models in production | Bruno Wassermann, David Ohana | 2019 | O'Reilly AI Conference London | |
Defending via strategic ML selection | Eitan Farchi, Onn Shehory, Guy Barash | 2019 | EDSMLS’19 | |
Post-Silicon Validation of the IBM POWER8 Processor | Kolan T., Mendelson H., Nahir A., Sokhin V. | 2019 | Mishra P., Farahmandi F. (eds) Post-Silicon Validation and Debug. Springer, Cham | post_silicon |
k-FAIR = k-LIVENESS + FAIR: Revisiting SAT-based Liveness Algorithms | Alexander Ivrii, Ziv Nevo, Jason Baumgartner | 2018 | Formal Methods in Computer-Aided Design (FMCAD) | Formal |
Finding All Minimal Safe Inductive Sets | Ryan Berryhill, Alexander Ivrii, Andreas G. Veneris | 2018 | Theory and Applications of Satisfiability Testing (SAT) | Formal |
AnchorHash: A Scalable Consistent Hash | Dean Lorenz, Katherine Barabash, Shay Vargaftik, Gal Mendelson, Ariel Orda, Isaac Keslassy | 2018 | IEEE/ACM Transactions on Networking | Formal |
Modify, Enhance, Select: Co-Evolution of Combinatorial Models and Test Plans | Rachel Tzoref-Brill and Shahar Maoz | 2018 | Symposium on the Foundations of Software Engineering (ESEC/FSE) | SWQ |
Syntactic and Semantic Differencing for Combinatorial Models of Test Designs | Rachel Tzoref-Brill and Shahar Maoz | 2017 | International Conference on Software Engineering | SWQ |
Cost-Effective Analysis Of Post-Silicon Functional Coverage Events | Avi Ziv, Ziv Nevo, Ronny Morad, prof. Prabhat Mishra and Farimah Farahmandi | 2017 | Design, Automation and Test in Europe (DATE) | post_silicon |
K-Induction Without Unrolling | Arie Gurfinkel and Alexander Ivrii | 2017 | Formal Methods in Computer-Aided Design (FMCAD) | Formal |
Learning Support Sets In Ic3 And Quip: The Good, The Bad, And The Ugly | Ryan Berryhill, Alexander Ivrii, Neil Veira and Andreas Veneris | 2017 | Formal Methods in Computer-Aided Design (FMCAD) | Formal |
Post-Silicon Validation In The Soc Era: A Tutorial Introduction | Avi Ziv, Ronny Morad, Prof. Prabhat Mishra and Sandip Ray | 2017 | IEEE Design & Test journal, June | post_silicon |
Solving Constraint Satisfaction Problems Containing Vectors Of Unknown Size | Erez Bilgory, Eyal Bin and Avi Ziv | 2017 | Principles and Practice of Constraint Programming (CP) | CSP |
Template Aware Coverage - Taking Coverage Analysis To The Next Level | Avi Ziv, Michael Behm, Raviv Gal, Bryan Hickerson, Einat Kermany, Bilal Saleh | 2017 | Design Automation Conference (DAC) | |
Coverage-Based Metrics for Cloud Adaptation | Yonit Magid, Rachel Tzoref-Brill, and Marcel Zalmanovici | 2016 | International Workshop on Quality-Aware DevOps (QUDOS) | SWQ |
Visualization of Combinatorial Models and Test Plans | Rachel Tzoref-Brill, Paul Wojciak, and Shahar Maoz | 2016 | International Conference on Automated Software Engineering (ASE) | SWQ |
Constrained Sampling And Counting: Universal Hashing Meets SAT Solving | Kuldeep S. Meel, Moshe Y. Vardi, Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Dror Fried, Alexander Ivrii, Sharad Malik | 2016 | AAAI Workshop | |
Designing Reliable Cyber-Physical Systems | Gadi Aleksandrowicz, Eli Arbel, Roderick Bloem, Timon ter Braak, Sergei Devadze, Goerschwin Fey, Maksim Jenihhin, Artur Jutman, Hans G. Kerkhoff, Robert Könighofer, Jan Malburg, Shiri Moran, Jaan Raik, Gerard Rauwerda, Heinz Riener, Franz Röck ,Konstantin Shibin, Kim Sunesen, Jinbo Wan, Yong Zhao | 2016 | Forum on specification & Design Languages (FDL) | |
Gating Aware Error Injection | Eli Arbel, Erez Barak, Bodo Hoppe, Shlomit Koyfman, Udo Krautz, Shiri Moran | 2016 | Haifa Verification Conference (HVC) | Formal |
Isa-Independent Post-Silicon Validation For The Address Translation Mechanisms Of Modern Microprocessors | George PAPADIMITRIOU, Athanasios CHATZIDIMITRIOU, Dimitris GIZOPOULOS, Ronny MORAD | 2016 | On-Line Testing and Robust System Design (IOLTS) | post_silicon |
On Computing Minimal Independent Support And Its Applications To Sampling And Counting | Moshe Y. Vardi, Sharad Malik, Alexander Ivrii, Kuldeep S. Meel | 2016 | Constraints - An International Journal, January | Formal |
Probabilistic Bug-Masking Analysis For Post-Silicon Tests In Microprocessor Verification | Doowon Lee, Tom Kolan, Arkadiy Morgenshtein, Vitali Sokhin, Ronny Morad, Avi Ziv, Valeria Bertacco | 2016 | Design Automation Conference (DAC) | post_silicon |
Test Generation Methods For Utilization Improvement Of Hardware-Accelerated Simulation Platforms | Wisam Kadry, Dmitry Krestyashyn, Arkadiy Morgenshtein, Amir Nahir, Vitali Sokhin, Jin Sung Park, Sung-Boem Park, Wookyeong Jeong, Jae-Cheol Son | 2016 | IEEE Design & Test , IEEE | |
The Art Of Semi-Formal Bug Hunting | Pradeep Kumar Nalla, Raj Kumar Gajavelly, Jason Baumgartner, Hari Mony, Robert Kanzelman, Alexander Ivrii | 2016 | International Conference on Computer Aided Design (ICCAD) | Formal |
Unveiling Difficult Bugs In Address Translation Caching Arrays For Effective Post-Silicon Validation | George Papadimitriou, Dimitris Gizopoulos, Athanasios Chatzidimitriou, Tom Kolan, Anatoly Koyfman, Ronny Morad and Vitali Sokhin | 2016 | International Conference on Computer Design (ICCD) | post_silicon |
Using Graph-Based CSP To Solve The Address Translation Problem | Merav Aharoni, Yael Ben-Haim, Shai Doron, Anatoly Koyfman, Elena Tsanko and Michael Veksler | 2016 | Principles and Practice of Constraint Programming (CP) | CSP |
Lattice-Based Semantics for Combinatorial Model Evolution | Rachel Tzoref-Brill and Shahar Maoz | 2015 | International Symposium on Automated Technology for Verification and Analysis (ATVA) | SWQ |
Combining Minimization and Generation for Combinatorial Testing | Itai Segall, Rachel Tzoref-Brill, and Aviad Zlotnick | 2015 | International Workshop on Combinatorial Testing (IWCT) | SWQ |
Feedback-Driven Combinatorial Test Design and Execution | Itai Segall and Rachel Tzoref-Brill | 2015 | International Systems and Storage Conference (Systor) | SWQ |
Comparative Study Of Test Generation Methods For Simulation Accelerators | Wisam Kadry, Dmitry Krestyashyn, Arkadiy Morgenshtein, Amir Nahir, Vitali Sokhin, Jin Sung Park, Sung{-}Boem Park, Wookyeong Jeong, Jae{-}Cheol Son | 2015 | Design, Automation and Test in Europe (DATE) | |
Constrained Sampling And Counting - Universal Hashing Meets SAT Solving | Supratik Chakraborty, Alexander Ivrii, Moshe Y. Vardi, Sharad Malik, Dror Fried, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia | 2015 | CoRR | Formal |
Designer-Level Verification – An Industrial Experience Story | Stephen Bergman, Gabor Bobok, Walter Kowalski, Shlomit Koyfman, Shiri Moran, Ziv Nevo, Avigail Orni, Viresh Paruthi, Wolfgang Roesner, Gil Shurek, Vasantha Vuyyuru | 2015 | Design, Automation and Test in Europe (DATE) | |
Mining Backbone Literals In Incremental SAT - A New Kind Of Incremental Data | Vadim Ryvchin, Alexander Ivrii, Ofer Strichman | 2015 | Theory and Applications of Satisfiability Testing (SAT) | Formal |
Pushing To The Top | Arie Gurfinkel, Alexander Ivrii | 2015 | Formal Methods in Computer-Aided Design (FMCAD) . The paper received the Best Application Paper Award | Formal |
Rectangle Placement For Vlsi Testing | Merav Aharoni, Odellia Boni, Ari Freund, Lidor Goren, Wesam Ibraheem, Tamir Segev | 2015 | Artificial Intelligence and Operations Research techniques in Constraint Programming (CPAIOR) | CSP |
Solutions To IBM Power8 Verification Challenges | K.-D. Schubert, J. M. Ludden, S. Ayub, J. Behrend, B. Brock, F. Copty, S. M. German, O. Hershkovitz, H. Horbach, J. R. Jackson, K. Keuerleber, J. Koesters, L. S. Leitner, G. B. Meil, C. Meissner, R. Morad, A. Nahir, V. Paruthi, R. D. Peterson, R. R. Pratt, M. Rimon, J. A. Schumann | 2015 | IBM Journal of Research and Development Vol 59 | |
Speeding Up Mus Extraction With Preprocessing And Chunking | Valeriy Balabanov, Alexander Ivrii | 2015 | Theory and Applications of Satisfiability Testing (SAT) | Formal |
The Verifiation Cockpit - Creating The Dream Playground For Data Analytics Over The Verification Process | Moab Arar, Michael Behm, Odellia Boni, Raviv Gal, Alex Goldin, Maxim Ilyaev, Einat Kermany, John Reysa, Bilal Saleh, Klaus-Dieter Schubert, Gil Shurek, Avi Ziv | 2015 | Haifa Verification Conference (HVC) |
Quantum Publications
Title | Author | Year | Conference/Journal | |
---|---|---|---|---|
Benchmarking the performance of quantum computing software | P. D. Nation, A. A. Saki, S. Brandhofer, L. Bello, S. Garion, M. Treinish, A. Javadi-Abhari | 2024 | arXiv:2409.08844 | Link |
Randomized Benchmarking Protocol for Dynamic Circuits | Liran Shirizly, Luke C. G. Govia, David C. McKay | 2024 | arXiv:2408.07677 | Link |
Linear Circuit Synthesis using Weighted Steiner Trees | Nir Gavrielov, Shelly Garion, Alexander Ivrii | 2024 | Quantum Information and Computation | Link |
Diagonalization of large many-body Hamiltonians on a quantum processor | N. Yoshioka et al. | 2024 | arXiv:2407.14431 | Link |
LightSABRE: A Lightweight and Enhanced SABRE Algorithm | Henry Zou, Matthew Treinish, Kevin Hartman, Alexander Ivrii, Jake Lishman | 2024 | arxiv:2409.08368 | Link |
Dissipative dynamics of graph-state stabilizers with superconducting qubits | Liran Shirizly, Grégoire Misguich, Haggai Landa | 2024 | Phys. Rev. Lett. 132, 010601 | Link |
A solvable model for graph state decoherence dynamics | Jérôme Houdayer, Haggai Landa, Grégoire Misguich | 2024 | SciPost Phys. Core 7, 009 (2024) | Link |
Modeling error correction with Lindblad dynamics and approximate channels | Zohar Schwartzman-Nowik, Liran Shirizly, Haggai Landa | 2024 | arXiv:2402.16727 | Link |
Nonlocal correlations in noisy multiqubit systems simulated using matrix product operators | Haggai Landa, Grégoire Misguich | 2022 | SciPost Phys. Core 6, 037 | Link |
Practical Quantum State Tomography for Gibbs states | Yotam Y Lifshitz, Eyal Bairey, Eli Arbel, Gadi Aleksandrowicz, Haggai Landa, Itai Arad | 2021 | Journal: arXiv:2112.10418 | Link |
Experimental implementation of non-Clifford interleaved randomized benchmarking with a controlled-S gate | Shelly Garion, Naoki Kanazawa, Haggai Landa, David C. McKay, Sarah Sheldon, Andrew W. Cross, and Christopher J. Wood | 2021 | Phys. Rev. Res. 3, 013204 | Link |
Simulating long-range hopping with periodically driven superconducting qubits | Mor M. Roses, Haggai Landa, and Emanuele G. Dalla Torre | 2021 | Phys. Rev. Res. 3, 033288 | Link |
Experimental Bayesian estimation of quantum state preparation, measurement, and gate errors in multi-qubit devices | Haggai Landa, Dekel Meirom, Naoki Kanazawa, Mattias Fitzpatrick, Christopher J. Wood | 2021 | Phys. Rev. Res. 4, 013199 | Link |
Identification of symmetry-protected topological states on noisy quantum computers | Daniel Azses, Rafael Haenel, Yehuda Naveh, Robert Raussendorf, Eran Sela, and Emanuele G. Dalla Torre | 2020 | Phys. Rev. Lett. 125, 120502 | Link |
Synthesis of CNOT-Dihedral circuits with optimal number of two qubit gates | Shelly Garion and Andrew W. Cross | 2020 | Quantum 4, 369 | Link |
Security Publications
Title | Author | Year | Conference/Journal | Focus | |
---|---|---|---|---|---|
Privacy Preserving Feature Selection for Sparse Linear Regression | Adi Akavia, Ben Galili, Hayim Shaul, Mor Weiss, Zohar Yakhini | 2024 | PoPETs '24 proceeding | FHE | Link |
BLEACH: Cleaning Errors in Discrete Computations over CKKS | Nir Drucker, Guy Moshkowich,Tomer Pelleg, and Hayim Shaul | 2023 | Journal of Cryptology | FHE | Link |
Efficient Skip Connections Realization for Secure Inference on Encrypted Data | Nir Drucker, Itamar Zimerman | 2023 | CSCML '23 proceeding | FHE | Link |
Generating One-Hot Maps Under Encryption | Ehud Aharoni, Nir Drucker, Eyal Kushnir, Ramy Masalha, Hayim Shaul | 2023 | CSCML '23 proceeding | FHE | Link |
Efficient Privacy-Preserving Viral Strain Classification via k-mer Signatures and FHE | Adi Akavia, Ben Galili, Hayim Shaul, Mor Weiss, Zohar Yakhini | 2023 | CSF 2023 | FHE | Link |
[Best artifcat award] HeLayers: A Tile Tensors Framework for Large Neural Networks on Encrypted Data | Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash, Lev Greenberg, Ramy Masalha, Dov Murik, Hayim Shaul, Omri Soceanu | 2023 | PoPETs '23 proceeding | FHE | Link |
HE-PEx: Efficient Machine Learning under Homomorphic Encryption using Pruning, Permutation and Expansion | Ehud Aharoni, Moran Baruch, Pradip Bose, Alper Buyuktosunoglu, Nir Drucker, Subhankar Pal, Tomer Pelleg, Kanthi Sarpatwar, Hayim Shaul, Omri Soceanu, and Roman Vaculin | 2023 | arXiv, ESORICS '23 proceeding | FHE | Link |
Training Large Scale Polynomial CNNs for E2E Inference over Homomorphic Encryption | Moran Baruch, Nir Drucker, Gilad Ezov, Yoav Goldberg, Eyal Kushnir, Jenny Lerner, Omri Soceanu, Itamar Zimerman | 2023 | arXiv | FHE | Link |
E2E near-standard and practical authenticated transciphering | Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, Omri Soceanu | 2023 | ePrint | FHE | Link |
Converting Transformers to Polynomial Form for Secure Inference Over Homomorphic Encryption | Itamar Zimerman, Moran Baruch, Nir Drucker, Gilad Ezov, Omri Soceanu, Lior Wolf | 2023 | arXiv | FHE | Link |
Privacy-Preserving Federated Learning over Vertically and Horizontally Partitioned Data for Financial Anomaly Detection | Swanand Ravindra Kadhe, Heiko Ludwig, Nathalie Baracaldo, Alan King, Yi Zhou, Keith Houck, Ambrish Rawat, Mark Purcell, Naoise Holohan, Mikio Takeuchi, Ryo Kawahara, Nir Drucker, Hayim Shaul, Eyal Kushnir, Omri Soceanu | 2023 | arXiv | FHE | Link |
Secure Range-Searching Using Copy-And-Recurse | Eyal Kushnir, Guy Moshkowich, Hayim Shaul | 2023 | ePrint | FHE | Link |
[Poster] Tile Tensors and HElayers recent advances and performance results | Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash, Lev Greenberg, Ramy Masalha, Guy Moshkowich, Dov Murik, Hayim Shaul, Omri Soceanu | 2023 | PoPETs '23 proceeding | FHE | |
[Poster] E2E near-standard hybrid encryption | Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, Omri Soceanu | 2023 | FHE | Link | |
[Poster] Efficient AES-GCM Decryption Under Homomorphic Encryption | Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, Omri Soceanu | 2023 | pdf, CCS '23 proceeding | FHE | Link Link |
[Tutorial] HEPack4ML: Advanced homomorphic encryption packing methods with applications to machine learning | Ehud Aharoni, Nir Drucker and Hayim Shaul | 2023 | CCS 2023 [Tutorial webpage] | FHE | Link |
[Keynote] Tutorial-HEPack4ML '23: Advanced HE Packing Methods with Applications to ML | Ehud Aharoni, Nir Drucker and Hayim Shaul | 2023 | CCS '23 Tutorial HEPack4ML proceeding | FHE | Link |
Demo: Rotating Wide Tensors with HElayers | Ehud Aharoni, Nir Drucker and Hayim Shaul | 2023 | CCS '23 Tutorial HEPack4ML proceeding | FHE | Link |
Complex Encoded Tile Tensors: Accelerating Encrypted Analytics | Ehud Aharoni, Nir Drucker,Gilad Ezov,Hayim Shaul, and Omri Soceanu | 2022 | IEEE Security and Privacy Journal | FHE | Link |
[Best regular paper award] Software Optimization of Rijndael for Modern x86-64 Platforms | Nir Drucker and Shay Gueron | 2022 | ITNG '22 proceeding | FHE | Link |
Timing leakage analysis of non-constant-time NTT implementations with Harvey butterflies | Nir Drucker, and Tomer Pelleg | 2022 | CSCML '22 proceeding | FHE | Link |
Privacy-preserving record linkage using local sensitive hash and private set intersection | Allon Adir, Ehud Aharoni, Nir Drucker, Eyal Kushnir, Ramy Masalha, Michael Mirkin, Omri Soceanu | 2022 | Cloud S&P proceeding | FHE | Link |
A methodology for training homomorphic encryption friendly neural networks | Moran Baruch, Nir Drucker, Lev Greenberg, and Guy Moshkowich | 2022 | SiMLA '22 proceeding | FHE | Link |
Secure SqueezeNet inference in 4 minutes | Ehud Aharoni, Moran Baruch, Nir Drucker, Gilad Ezov, Eyal Kushnir, Guy Moshkowich, Omri Soceanu | 2022 | 43rd IEEE Symposium on Security and Privacy s&p 2022 posters, pdf | FHE | Link Link |
[Tutorial] Advanced homomorphic encryption packing methods with applications to machine learning | Ehud Aharoni, Nir Drucker and Hayim Shaul | 2022 | CCS 2022 [Tutorial webpage] | FHE | Link |
Next Generation Data Masking Engine | Micha Moffie, Sigal Asaf, Dan Mor, Ariel Farkash | 2022 | DPM 2021, CBT 2021. Lecture Notes in Computer Science, vol 13140. Springer, Cham. | Cloud Security | Link |
NTT software optimization using an extended Harvey butterfly | Bradbury Jonathan, Nir Drucker, Marius Hillenbrand | 2021 | ePrint | FHE | Link |
Enhancing GDPR compliance through data sensitivity and data hiding tools | Xabier Larrucea, Micha Moffie, Dan Mor | 2021 | The Journal of Universal Computer Science | Cloud Security | Link |
Supporting unknown number of users in keystroke dynamics models. | Itay Hazan, Oded Margalit, Lior Rokach. | 2021 | Knowledge-Based Systems 221 (2021): 106982. | Cyber Security | Link |
Deep Learning Based Sequential Mining for User Authentication in Web Applications. | Matan Levi and Itay Hazan. | 2020 | International Workshop on Emerging Technologies for Authorization and Authentication. Springer, Cham, 2020. | Cyber Security | Link |
Keystroke dynamics obfuscation using key grouping. | Itay Hazan, Oded Margalit, Lior Rokach. | 2020 | Expert Systems with Applications 143 (2020): 113091. | Cyber Security | Link |
Deep reinforcement one-shot learning for artificially intelligent classification in expert aided systems. | Anton Puzanov, Senyang Zhang, and Kobi Cohen. | 2020 | Engineering Applications of Artificial Intelligence 91 (2020): 103589 | Cyber Security | Link |
Decompiled APK based malicious code classification. | Roni Mateless, Daniel Rejabek, Oded Margalit, and Robert Moskovitch. | 2020 | Future Generation Computer Systems (2020): 0167-739X. | Cyber Security | Link |
Improved Feature Engineering for Free-Text Keystroke Dynamics. International Workshop on Security and Trust Management. | Eden Abadi and Itay Hazan. | 2020 | Springer, Cham, 2020. | Cyber Security | |
Anonymizing Machine Learning Models | Abigail Goldsteen, Gilad Ezov, Ron Shmelkin, Micha Moffie, Ariel Farkash | 2020 | International Workshop on Data Privact Management (DPM) | Cloud Security | Link |
Data Minimization for GDPR Compliance in Machine Learning Models | Abigail Goldsteen, Gilad Ezov, Ron Shmelkin, Micha Moffie, Ariel Farkash | 2020 | AI and Ethics | Cloud Security | Link |
Reducing Risk of Model Inversion Using Privacy-Guided Training | Abigail Goldsteen, Gilad Ezov, Ariel Farkash | 2020 | Cloud Security | Link | |
User profiling using sequential mining over web elements. | Matan Levi and Itay Hazan. | 2019 | 10th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS) | Cyber Security | |
Securing keystroke dynamics from replay attacks. | Itay Hazan, Oded Margalit, and Lior Rokach. | 2019 | Applied Soft Computing (2019): 105798. | Cyber Security | Link |
Temporal Anomaly Detection: Calibrating the Surprise. | Eyal Gutflaish, Aryeh Kontorovich, Sivan Sabato, Ofer Biller, and Oded Sofer. | 2019 | AAAI 2019: 3755-3762 | Cyber Security | Link |
Forgotten @ Scale: A Practical Solution for Implementing the Right To Be Forgotten in Large-Scale Systems | Abigail Goldsteen, Tomer Douek, Yaniv Cohen, Igor Gokhman, Ofir Keren-Ackerman, Gadi Katsovich, Grisha Weintraub, and Doron Ben-Ari | 2019 | Workshop on Security and Privacy in Models and Data. International Conference on Model and Data Engineering | Cloud Security | Link |
Multi-Value Classification of Ambiguous Personal Data | Sigal Asaf, Ariel Farkash and Micha Moffie | 2019 | Workshop on Security and Privacy in Models and Data. International Conference on Model and Data Engineering | Cloud Security | Link |
Deep reinforcement one-shot learning for change point detection. | Anton Puzanov, and Kobi Cohen. | 2018 | 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2018. | Cyber Security | Link |
Advanced Analytics for Connected Car Cybersecurity. | Matan Levi, Yair Allouche, and Aryeh Kontorovich. | 2018 | VTC Spring 2018: 1-7 | Cyber Security | Link |
Simulating user activity for assessing effect of sampling on DB activity monitoring anomaly detection. | Hagit Grushka-Cohen, Ofer Biller, Oded Sofer, Lior Rokach, and Bracha Shapira. | 2018 | Policy-Based Autonomic Data Governance 2018 | Cyber Security | Link |
Brief Announcement. Adversarial Evasion of an Adaptive Version of Western Electric Rules. | Oded Margalit. | 2018 | CSCML 2018: 278-282 | Cyber Security | Link |
A Syntactic Approach to Domain-Specific Automatic Question Generation. | Guy Danon and Mark Last. | 2017 | eprint arXiv:1712.09827 (12/2017) | Cyber Security | |
Supervised Detection of Infected Machines Using Anti-virus Induced Labels - (Extended Abstract). | Tomer Cohen, Danny Hendler, and Dennis Potashnik. | 2017 | CSCML 2017: 34-49 | Cyber Security | |
Cluster-Based Load Balancing for Better Network Security. | Gal Frishman, Yaniv Ben-Itzhak, and Oded Margalit. | 2017 | Big-DAMA@SIGCOMM 2017: 7-12 | Cyber Security | |
Visualizing Insider Threats: An Effective Interface for Security Analytics. | Bar Haim, Eitan Menahem, Yaron Wolfsthal, and Christopher Meenan. | 2017 | IUI Companion 2017: 39-42 | Cyber Security | |
Brief Announcement: A Consent Management Solution for Enterprises | Abigail Goldsteen, Shelly Garion, Sima Nadler, Natalia Razinkov, Yosef Moatti and Paula Ta-Shma | 2017 | International Symposium on Cyber Security Cryptography and Machine Learning (CSCML 2017) | Cloud Security | Link |
XML-AD: Detecting anomalous patterns in XML documents. | Eitan Menahem, Alon Schclar, Lior Rokach, and Yuval Elovici. | 2016 | Inf. Sci. 326: 71-88 (2016) | Cyber Security | |
Analysis and Mitigation of NoSQL Injections. | Aviv Ron, Alexandra Shulman-Peleg, and Anton Puzanov. | 2016 | IEEE Security & Privacy 14(2): 30-39 (2016) | Cyber Security | |
Using Computer Programming Competition for Cyber Education. | Oded Margalit. | 2016 | SwSTE 2016: 104-107 | Cyber Security |