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Abstract 
 

 The volumes of digital information are growing 
continuously and most of today’s information is “born 
digital”.  Alongside this trend, business, scientific, 
artistic and cultural needs require much of this 
information to be kept for decades, centuries or 
longer. The convergence of these two trends implies 
the need for storage systems that support very long 
term preservation for digital information. We describe 
Preservation DataStores, a novel storage architecture 
to support digital preservation. It is a layered 
architecture that builds upon open standards, along 
with the OAIS, XAM and OSD standards. This new 
architecture transforms the logical information-object, 
a basic concept in preservation systems, into a 
physical storage object. The transformation allows 
more robust and optimized implementations for 
preservation aware storage.  The architecture of 
Preservation DataStores is being developed as an 
infrastructure component of the CASPAR project* and 
will be tested in the context of this project using 
scientific, cultural, and artistic data. 
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1. Introduction 
 
The growth of long-lived digital information, along 

with new compliance regulations such as HIPAA, 
Sarbanes-Oxley, OSHA and other federal securities 
laws and regulations, demand the long-term viability 
of data. Other types of data must be preserved for the 
benefit of humankind. Just some examples include 
earth observation data from the European space 
agency and cultural heritage data from UNESCO, 
which must be kept for decades, centuries, or longer. 
Additionally, the amount of long-lived data is 
expected to grow as more digital devices generate vast 
amounts of born-digital data.  This increases the need 
for digital preservation systems to preserve a myriad 
of information types including scientific, financial, 
healthcare, artistic, and cultural data—for tens and 
hundreds of years. Most of this information is 
reference data; it hardly changes once written. Due to 
its nature, this kind of data is typically accessed 
infrequently. Consequently, preservation systems 
generally utilize near-line and offline storage.   

The digital preservation challenge can be divided 
into “bit preservation” and “logical preservation”. Bit 
preservation is the ability to restore the bits in the 
presence of storage media degradation or 
obsolescence, physical destruction by a malicious user, 
or even environmental catastrophes such as fire and 
flooding. Logical preservation involves preserving the 
understandability and usability of the data, despite 
logical attacks that may occur or unknown future 
changes that will take place in technologies and users. 
The data needs to be properly accessed and interpreted 
in the far future when current technologies for servers, 
operating systems, data management products and 
applications may no longer exist.  Additionally, logical 



 

preservation needs to maintain the provenance of the 
data, along with its authenticity and integrity, and 
ensure that only legitimate users will access it.  

While the issues surrounding bit preservation are 
well understood and can be supported by some 
products, logical preservation is still an open research 
area. A core standard for digital preservation systems 
is the Open Archival Information System (OAIS) [1], 
an ISO standard since 2003 (ISO 14721:2003 OAIS). 
This standard concentrates on logical preservation and 
specifies the terms, concepts, and reference models to 
be used in a system dedicated to preserving digital 
assets for a dedicated user group that needs to access 
and understand the information preserved (designated 
community). OAIS is a high-level reference model, 
which means it is flexible enough to be used in a wide 
variety of environments. However, more detailed steps 
and workflow stages need to be developed for its 
implementation. 

OAIS defines logical preservation as a recursive 
problem; in addition to storing the raw data, it must 
also store the separately-born (in time and place) 
metadata that helps interpret and use the raw data. 
Moreover, this metadata (representation information) 
may recursively need additional metadata to help 
interpret it. The recursion ends when the 
representation information is non-digital and preserved 
by the designated community. To further support 
logical preservation, OAIS defines additional metadata 
that is associated with the raw data and describes its 
context, logs its provenance, and ensures its data 
integrity (fixity).  

At the heart of any solution to the preservation 
problem, resides a storage component, which is the 
permanent location of the information. Traditional 
archival storage considers only bit preservation, if it 
considers preservation issues at all, and generally has 
functions to insert data into permanent storage, 
manage a storage hierarchy, refresh media on which 
archive holdings are stored, perform routine and 
special error checking, provide disaster recovery 
capabilities, and retrieve data from the permanent 
storage.  

We have already laid the foundation for the concept 
of preservation aware storage [2], which supports 
logical preservation in addition to bit preservation. In 
this paper, we provide an architecture to support this 
concept. Previously [2], we argued that the traditional 
archival storage should be enhanced with additional 
functionalities oriented towards logical preservation. 
Preservation aware storage encapsulates the raw data 
with its complex interrelated metadata objects, so they 
are inseparable during the migration process and 
future data access.  Preservation aware storage also 
adds more functions to the storage component. It 

decreases the amount of data transfers between 
applications and the storage by offloading data 
intensive functions, such as fixity computations, to the 
storage. In addition, preservation aware storage 
simplifies applications by transferring the 
responsibility of managing the storage-related events, 
such as provenance events, to the storage itself. 
Finally, preservation aware storage handles migration 
internally, including the ability to execute externally-
specified logical transformations. 

Our main contribution in this paper is the definition 
of an architecture for preservation aware storage: 
Preservation DataStores (PDS). PDS is a significant 
advance over traditional storage, which is oblivious to 
the needs of logical preservation.  In contrast to 
traditional block or file storage, or even traditional 
archival systems, PDS materializes the logical concept 
of a preservation information-object into a physical 
storage object. It defines a way to ensure the grouping 
of metadata with data, supports functions such as 
provenance and fixity that are close to the data, and 
supports the execution of transformations during 
physical migrations.  PDS is a layered architecture 
based on open standards and, as such, is compliant 
with the general design principle of preservation 
systems that employ open standards where possible. 
We are developing Preservation DataStores as an 
infrastructure component of CASPAR, a European 
Union project that focuses on the preservation of data 
for very long periods of time [3]. CASPAR is building 
a framework to support the end-to-end preservation 
”lifecycle” for scientific, artistic, and cultural 
information based on existing and emerging standards, 
most notably the OAIS model.  

In the rest of this paper, we review the concept of 
preservation aware storage and the requirements a 
preservation aware storage must address. We then 
describe the PDS architecture, which aims to address 
those requirements.   PDS builds on a set of standard-
based layers (OAIS, XAM and OSD) with generic 
mappings between the layers. The described mappings 
have merits beyond preservation and may be used for 
other types of applications as well. We conclude with 
a discussion of future work and a summary. 

 
2. Related work 
 

The storage aspect of digital preservation has been 
attracting more attention lately [4, 5, 6, 7] and this 
trend is likely to increase. Storer et al. [7] describe 
both existing security threats (e.g., integrity, 
authentication and privacy) and new specific threats 
(e.g., slow attacks) that arise when storing data for 
long periods of time. Furthermore, the work examines 



 

how existing systems address these concerns to ensure 
long term survivability. Baker et al. [5] present the key 
differences between enterprise systems and long term 
storage systems in terms of requirements and threats. 
The work provides several architectural solutions that 
focus on replication across autonomous sites, reduced 
per-site engineering costs, and the ability to scale over 
time and different technologies. Baker et al. [4] 
explore the needs and threats related to the long-term 
storage of digital information. They describe an 
extended reliability model and discuss several 
strategies to reduce data loss. The work suggests a 
possible system architecture that incorporates the 
different strategies and aims at balancing the different 
tradeoffs.  All of the studies mentioned above 
concentrate primarily on bit preservation, suggesting 
how traditional storage systems can address the new 
challenges posed by long-term bit preservation but do 
not address the logical preservation aspects.  

The Storage Resource Broker (SRB) [6, 8, 9] is a 
data grid technology developed by the San Diego 
Supercomputing Center (SDSC). SRB is middleware 
built on top of standard file systems, commercial 
archives, and storage systems. It manages distributed 
data, enabling the creation of data grids that focus on 
the sharing of data.  SRB was recently extended to 
directly support archives that focus on the preservation 
of data from the bit preservation perspective. The SRB 
stores the data records (content) as files on the storage 
system repository; a separate database is used to store 
the metadata (context) related to the electronic record 
and the data grid is used to maintain the association 
between the content and context. The data grid 
technology also includes support for managing and 
replicating data on remote storage systems, a uniform 
name space for referencing the data, a federated 
catalog for managing information about the data, and 
mechanisms for interfacing to the preferred access 
method. SRB has been used as a foundation 
technology in the context of several preservation 
projects; many of them were commissioned by the 
National Archives and Records Administration 
(NARA) and supported by the Library of Congress 
and NSF. The SRB code was recently extended into a 
new system called iRODS [10], Intelligent Rule-
Oriented Data management System. Its rule engine can 
be useful for implementing preservation-specific 
policies.  

The e-depot digital archiving system of the 
National Library of the Netherlands (KB) is described 
by Oltmans et al. [11]. The main component of e-
depot is the Digital Information Archiving System 
(DIAS) from IBM. DIAS provides an open deposit 
library solution for storing and retrieving electronic 
documents and multimedia files. The e-depot library 

conforms to the OAIS standard and supports physical 
and logical digital preservation. The paper describes 
the design of an extension to DIAS called Preservation 
Manager, which manages and stores the metadata 
associated with the preserved digital content. The 
content and metadata are ingested into DIAS, where 
the content is assigned a unique identifier. However, 
although the content bit stream is stored in the archive, 
the metadata associated with it is stored in the KB 
catalog, which is in a physically separate location.   

Like many other systems, both SRB and DIAS 
keep the metadata in a database that is separate from 
the content. Our approach stores the metadata along 
with the raw data managed by the storage itself. This 
encapsulation keeps the data and the metadata tied 
together as the bits of the preserved data change (e.g., 
migrations). The physical co-location is a key 
characteristic; it allows graceful loss of data and thus 
reduces the chances of losing the ability to interpret 
the data. 

One of the intriguing approaches to digital 
preservation is the Universal Virtual Computer (UVC) 
[�12]. It employs the emulation approach and aims to 
allow digital objects to be retained in their original 
format. To enable the interpretation of the object in the 
future, a program that can decode the data and present 
it in an understandable form is also kept. UVC and the 
emulation approach complement our approach and can 
be used as additional representation information in a 
preservation aware storage. 

Recently, we have observed an emerging 
technology trend where functions such as bit-to-bit 
data migration, block-level data integrity, and even 
encryption, are carried out by advanced, intelligent 
disks and tapes. Some systems, such as the 
provenance-aware storage system (PASS) [13], track 
the provenance of data at the storage level rather than 
managing it in a standalone database. PASS is 
prototyped at the file system level and demonstrates 
the advantages of managing provenance at the storage 
system level.  

Long-term security aspects are further explored in 
the POTSHARDS [14] system, which provides secure 
long-term storage without encryption. The 
POTSHARDS system shifts data secrecy from 
encryption to authentication by using secret splitting 
across multiple authentication domains. Furthermore, 
since data retrieval methods cannot rely upon external 
indexes, approximate pointers between independent 
archives are utilized to ensure availability.   

Several other efforts [15, 16] provide further 
motivation for solving the general data preservation 
problem as well as requirements for the overall 
preservation system. The National Digital Information 
Infrastructure and Preservation Program (NDIIPP) 



 

[17] is a collaborative initiative run by the Library of 
Congress. Its goal is to develop a national strategy for 
digital preservation. NDIIPP develops a rich set of 
formats appropriate for preservation and provides a 
high level architecture. The architecture emphasizes 
the need to support a federation of archives but does 
not refer to specific storage aspects or functionalities 
of the system. 

 
3. Preservation aware storage 
 

This section briefly summarizes the concept of 
preservation aware storage [2]. Preservation aware 
storage serves as the foundation for the architecture 
proposed in this paper.  

The storage component is an important part of 
preservation systems. This is the portion of the system 
that manages the long-term storage and maintenance 
of digital material. We argue [2] that digital 
preservation systems will be more robust and have a 
lower probability for data corruption or loss if they 
offload preservation related functionality to the storage 
layer.  This offloading enables the storage layer to 
reduce the amount of data transfers to applications and 
improve its own data placement in favour of 
preservation. We use the term preservation aware 
storage to describe such a storage component with a 
built-in support for preservation. OAIS-based storage 
is a specific type of preservation aware storage, based 
on OAIS notions and its functional and information 
models. 

The main OAIS concept relevant to storage is the 
Archival Information Package (AIP) depicted in 
Figure 1. 

   

 
Figure 1. OAIS AIP logical structure 

 
An AIP contains zero or one content information 

parts, which include the raw data and its interpretation, 
and one or more Preservation Description Information 
(PDI) parts, which provide additional metadata related 
to the content logical preservation. More specifically, 
content information contains the Content Data Object 
(the raw data) that is the focus of the preservation, plus 
the Representation Information (RepInfo), which is 

needed to render the object intelligible to its 
designated community. This may include information 
regarding the hardware and software environment 
needed to view the content data object. Note that the 
RepInfo is a recursive object and may have additional 
RepInfo to interpret itself. This recursion ends when 
facing a RepInfo that is non-digital and will be 
preserved by the designated community. For example, 
astronomical data represented in a FITS file is 
associated with RepInfo that includes a dictionary to 
describe the FITS keywords. The FITS dictionary is 
associated with RepInfo that includes the dictionary 
structure specification. Assuming the dictionary 
specification is in XML, its RepInfo includes the XML 
specification, and the latter is associated with a 
RepInfo that includes the unicode specification. We 
assume that the unicode specification is preserved by 
the designated community and thus it doesn’t need 
more RepInfo. 

The PDI is further divided into four sections: 
reference (globally unique and persistent identifiers), 
provenance (chain of custody, the history and the 
origin of the content information custody), context 
(relationships of the content information to its 
environment), and fixity (a demonstration that the 
particular content information has not been altered in 
an undocumented manner).  

The following list is a refinement of our previous 
work [2] and includes the major requirements and 
desired features of an OAIS-based preservation aware 
storage:  

� In the storage, encapsulate and physically 
co-locate the raw data and its complex interrelated 
metadata objects, such as representation information, 
provenance, and fixity. This ensures that the metadata 
needed for interpretation is not separated from the raw 
data and thus never lost (if the raw data survives).  

� Include the representation information of 
metadata (e.g., representation information of fixity and 
provenance) so the metadata can be interpreted when 
accessed in the future. 

� Utilize the locality property and execute data 
intensive functions such as fixity (i.e., data integrity) 
computations within the storage component.  

� Handle some of the provenance events 
internally. The applications on top of the preservation 
aware storage should be free of managing events that 
can be handled internally in the storage. Moreover, 
this enables richer types of provenance events and the 
inclusion of events related to the migration between 
physical medium and the transformation of 
representations.  

� Support the loading and execution of 
external transformations during the migration process 



 

and facilitate on demand triggering of these 
transformations.  

� Support media migration, as opposed to 
system migration. In media migration, performing 
migration from one system to another can be done by 
physically detaching the media from one system and 
attaching it to the new system.  

� Maintain referential integrity including 
updating all the links during the migration process so 
they remain valid in the new system. This requires an 
awareness of certain metadata fields that represent 
links, both internally to the system and externally.  

� Ensure readability of the data by a different 
system in the future. This is done by developing and 
supporting global self-describing media independent 
formats.  

� Support a graceful loss of data. Some 
portions of the data are likely to be lost or become 
corrupted over time. If some data is lost, a good 
preservation system must minimize the economic 
effect of this data loss and prevent cases where data 
that is still intact in the system cannot be read or 
interpreted.  

From among these requirements, we focused on 
supporting logical preservation; however, as should be 
clear, there is often an interdependency and interaction 
between logical and bit preservation (e.g., the 
interactions between migration to new media and 
transformations of formats). 

 
4. Preservation DataStores: preservation 

aware storage  architecture  
 

Preservation DataStores (PDS) are OAIS-based 
preservation aware storage that focus on supporting 
logical preservation. They are aware of the structure of 
an archival information package (AIP) and offload 
OAIS derived generic functions such as representation 
information inclusion, provenance tracking, fixity 
computation, and migration support to the storage 
layer. They provide strong encapsulation of large 
quantities of metadata with the data at the storage level 
and enable easy migration of the preserved data across 
storage devices.  

 
4.1. Architecture overview 

 
The PDS architecture includes a stack of three 

layers based on OAIS, XAM and OSD, respectively. 

Figure 2 depicts the general architecture of PDS. The 
top layer is an OAIS-based preservation engine, which 
provides preservation functionality for heterogeneous 
data and applications. It includes efficient generation 
and placement of AIPs along with support for 
migration and data transformations performed within 
the storage. The second layer includes an eXtensible 
Access Method (XAM) [18] library. XAM is an 
emerging storage standard intended for reference 
information that provides a logical abstraction for data 
containers. The bottom layer includes an Object-based 
Storage Device (OSD) [19, 20], an advanced type of 
storage implementing an object-based interface that 
has a built-in access control mechanism.  

In OAIS, AIPs are the information objects that are 
passed to and from the storage component. Our PDS 
supports both a direct API as well as a web services 
API.  We chose a standards-based web services API 
since web services are platform independent and 
support clients built within different environments; 
this is an important feature in preservation 
environments. 

Our proposed PDS is constructed of two processes. 
The higher level process includes the upper two layers 
and is responsible for implementing OAIS functions, 
providing the interface to the outside world, and 
incorporating XAM functionality. The lower level 
process includes the bottom layer and provides the 
storage in the form of the object store. 

The higher level process is composed of a stack of 
the following components: 

� Preservation Engine – provides the external 
interface and the OAIS specific preservation 
semantics.  

� XAM Library – generates logical container 
objects of data and metadata under a common globally 
unique name.  

� XAM to OSD – a bridge that maps the 
logical XAM objects to physical OSD.   

Since the higher level process needs to support 
HTTP, web services, and security, to interface with 
clients of the PDS, the box may utilize an application 
server. Offloading an application server to the storage 
box supports the new paradigm of moving the 
application to the data instead of the traditional 
paradigm of moving the data to the application.  

 
 



 

 
Figure 2. Preservation DataStores architecture 

 
The second process in the PDS box serves as the 

object layer and includes an OSD component. The 
OSD process requires periodical communication with 
the security admin, an external component used to 
obtain security credentials that enforce access control. 
In the proposed architecture, the OSD calls a third-
party security admin via an API or web services. 

The object-layer can also be materialized using a 
standard file system as the underlying storage instead 
of an OSD. The chosen architecture builds on an OSD 
as its object-layer since an OSD is naturally designed 
to support an object store layer [21]. It handles and 
manages the space allocation of an object and it 
associates attributes at the storage level in an optimal 
manner. This allows optimizations such as placing 
some key OAIS attributes (e.g., a link to the 
representation information) close to the data in a 
persistent manner. Furthermore, in cases where the 
actual disks are network attached, an OSD provides 
object-level secure access control to networked disks.  

 
4.2. Preservation Engine layer 

 
The preservation engine component provides the 

external API, implements the OAIS abstractions and 
provides the preservation characteristics. In this 
section, we describe the unique features supported by 

the preservation engine layer and elaborate on the 
value of realizing them in the storage.  A policy 
manager, either internal or external will drive the 
application of these features.  

In addition to these specific features, a major role 
of the preservation engine layer is to perform a 
mapping between the different layers of abstraction.  
At the top, the preservation engine layer uses OAIS 
concepts to communicate with its clients. In turn, the 
preservation engine builds upon XAM underneath to 
implement its function.  Thus it must map between the 
OAIS and XAM levels of abstraction.  We describe 
this mapping in detail in Section 4.5.1. 

 
4.2.1.  Managing availability/data loss. One key 
responsibility of the preservation aware storage is to 
manage the availability of the data entrusted to the 
storage. Traditional storage systems manage data 
availability (e.g., RAID, remote mirroring etc.) at the 
block level. Instead, PDS must manage availability at 
a higher level, specifically at the level of an AIP. A 
basic assumption is that some data will be lost over 
time; thus a basic requirement is that the degree of 
information loss should be proportional to the number 
of bits lost. This is difficult to achieve with systems 
that provide availability at the block level.  



 

Not all entities stored by the PDS are of equal 
importance.  For example, some content data objects 
may have very high inherent value and some metadata 
(e.g., representation information for a common format) 
may be the key to interpreting large amounts of data.  
We expect that a policy manager will direct the PDS 
regarding the inherent importance of the content data 
objects while the PDS itself can determine the 
importance of the metadata it manages. Propagating 
this knowledge to the PDS allows the storage system 
to employ techniques such as grouping related objects 
and creating copies of objects, both within a medium 
and across media. 

For composite objects such as AIPs, if any sub-
component is lost, access to the entire composite may 
be lost.  This is of particular importance when dealing 
with data stored using offline media (e.g., tapes), 
which can be physically moved between locations. To 
reduce the risk of data loss, the AIP sub-objects are 
placed together physically. The preservation engine 
layer aggregates the AIPs into clusters, such that each 
cluster is self-contained, namely AIPs that reference 
each other are put on the same cluster. Then, each 
cluster is placed on the same media unit (e.g., tape 
volume) to maintain physical co-location. The media 
unit can sometimes be a logical unit (e.g., three 
adjacent tape volumes), but we avoid situations where 
the data is completely distributed. In addition to this 
co-location of related data, the PDS may also make 
physical copies of information that is deemed of high 
importance.  

The alternative to having the PDS manage the 
availability of AIPs would be to have the client of the 
storage manage the physical organization of the data.  
Such a breaking of abstraction would greatly increase 
the complexity of the client and would be a step 
backwards since in most applications the application is 
not aware of the physical data placement. 

 
4.2.2.  AIP transformations. Another key aspect of 
long term digital preservation is the need to migrate 
data objects being preserved. This may be triggered by 
changes such as media decay, obsolescence of 
hardware or software, or a change in the copyright or 
external environment (e.g., organization). Some types 
of migration entail simply copying a set of bits from 
one medium to another to ensure the bits are 
preserved. It is natural for this type of migration to be 
handled by the storage, since the storage is aware of 
the media characteristics and can monitor the health of 
the media. It also saves bandwidth because the data 
does not need to be read by a client and written by the 
client to a different media. 

Another type of migration is transformation, which 
is the focus of logical preservation. Transformations 

involve changing the bits of an existing data object 
(e.g., transforming data in a format that is about to 
become obsolete into the replacing format).  While the 
storage should not be aware of the semantics of the 
transformation, it is natural for the storage to apply the 
transformations.  This can be done at the same time as 
data is migrated for bit preservation, saving accesses 
to the physical medium.  Alternatively, it can be done 
on demand; prior to returning an AIP to the client, the 
format can be transformed into one the client 
recognizes.  The storage should support 
transformations since this is a data intensive function 
and it can improve overall system performance by 
performing the computation for the transformation 
close to the storage. It also minimizes the risk of data 
loss involved in massive data transfers for 
transformation purposes. 
 
4.2.3.  AIP identifier generation. An AIP must have 
a persistent globally unique identifier. In PDS, this 
identifier is composed of a logical ID, a copy number 
and a version number. The logical ID is the same 
identifier for all the copies and versions of the same 
AIP, and can be used to find the AIP in the 
preservation system. It can be constructed using a 
standard for persistent identifiers such as Digital 
Object Identifier (DOI). The copy number identifies 
the various copies of the same bit-wise AIPs while the 
version number identifies the various versions 
originating from the same AIP (i.e., transformations 
create new versions of AIPs). 

It is important for the AIP ID generation to be 
supported by the preservation storage for two reasons.  
First, the preservation storage is a centralized resource 
used by all preservation clients and thus is a natural 
location for ensuring the uniqueness of IDs. Second, 
as described above, the preservation storage will at 
times create new AIPs, either through transformations 
or through copying. Since it is creating new AIPs 
based upon existing AIPs, it is natural for the 
generation of the AIP ID to be handled by the storage.   
 
4.2.4.  Storlet container. Digital preservation systems 
need to periodically perform data validation and data 
transformation procedures. To perform these data-
intensive tasks, traditional systems move the data 
across the network to the application side. Once the 
procedures complete, the system moves the data back 
to the storage component. Similar to the ABACUS 
system [22] and active disks [23], we propose to better 
utilize the locality property and perform these data 
intensive procedures within the storage. Therefore, the 
preservation engine includes a module container that 
can embed and execute restricted modules with pre-
defined interfaces. We use the term ‘storlets’ (like 



 

applets in applications and servlets in servers) to 
describe these deployable restricted modules. Storlets, 
such as transformation modules and fixity 
computation modules, can be deployed in PDS and 
later on executed either periodically or when explicitly 
triggered.   
 
4.2.5. Manage preservation specific metadata. 
OAIS specifies a set of metadata that is needed for 
AIPs.  By having the management, and in some cases 
the computation, of this metadata handled by the 
storage component, we can offload work from the 
client, avoid transferring data back and forth between 
clients and the PDS, and ensure a consistent and 
correct implementation 

One important set of metadata is the Preservation 
Description Information (PDI).  The PDI includes the 
fixity (an integrity check value).  Computing the fixity 
within the PDS prevents unnecessary data transfers 
and ensures a consistent implementation for all 
objects.  In addition, the PDS will be executing data 
transformations, which change the fixity value; hence, 
we need to know how to calculate fixity. The fixity 
algorithm may be updated by the user (using the 
storlet container) or chosen when there are several 
options.  

Provenance is a second class of metadata in the 
PDI. Provenance events may be triggered internally 
(e.g., replication, transformation, etc.), making it 
natural to manage the provenance data within the 
storage. Other events, such as a change of ownership, 
are triggered from outside the archival storage and an 
API is called to inform the preservation engine of the 
event. If the AIP was already moved to offline media, 
the preservation engine records the provenance events 
that occur between migrations and is responsible for 
updating the preservation data on the next migration. 
If the AIP is online, the updates may take place upon 
occurrence. 

Another important class of preservation-specific 
metadata is Representation Information (RepInfo), 
which is the metadata needed to interpret the content 
data that is being preserved. The RepInfo is by itself 
an AIP, which can be referenced by multiple other 
AIPs. The RepInfo includes references to additional 
RepInfos needed to interpret it. This forms a RepInfo 
network where some of its links may refer to RepInfos 
stored in external registries. To ensure the availability 
of the data it manages, the PDS validates the external 
RepInfo links and optionally copies them from the 
external registries to the PDS to maintain physical co-
location (as described above).  Multiple AIPs with the 
same RepInfo should be clustered together on the 
same medium.  This allows the system to share the 
RepInfo among content objects with the same 

representation and manage the availability of the 
RepInfo by creating the appropriate number of copies.  
Since the storage layer is aware of the mapping of data 
to physical media, it is natural to have the management 
of RepInfo offloaded to the storage. 

The Preservation Description Information (PDI) 
has a special kind of RepInfo. This is the 
representation information for the metadata generated 
by the preservation engine itself and thus should be 
managed by the storage component. 

The PDS also ensures the referential integrity of the 
links in the PDI and RepInfo elements. This includes 
links to external registries, URLs, and AIP IDs. Each 
of these references needs to be validated. This 
validation should take place on ingest, access, and 
each time the AIP is accepted into the system (during 
ingestion, transformation etc.).  This validation of 
referential integrity is essential in ensuring the 
availability of the data.   
 
4.3. XAM layer 
 

While PDS exposes high level complex logical 
objects such as AIP, existing storage systems (object, 
file or block) expose much lower-level interfaces and 
do not provide the necessary abstractions. Our 
architecture uses a middle-layer of abstraction to 
mediate between the lower storage system and the 
preservation engine. We chose to base this mid-layer 
on XAM [18].  This section describes XAM and why 
it was chosen as the mid-layer abstraction in the PDS 
architecture.  

A XAM storage system contains one or more 
XSystems, where each XSystem is a logical container 
of XSet records. An XSet, which is the basic artifact in 
XAM, is a data structure that packages multiple pieces 
of XSet fields (data and metadata), all bundled together 
for access under a common globally unique external 
name, called an XUID. There are two types of XSet 
fields: property fields that usually contain metadata 
and XStream fields that contain unbounded byte 
streams of a valid MIME-type. Each XSet field has a 
fixed set of attributes that are manipulated via get/set 
methods.  

The XAM architecture allows applications to use 
the XAM API to store and retrieve information in a 
vendor-independent and location-independent manner.  
The top software module in the XAM architecture is 
the XAM library, which exposes the XAM API. This 
module interacts with the application and provides a 
view of the underlying storage through the entities of 
the XAM world. Under the XAM library resides the 
Vendor Interface Module (VIM), which acts as a 



 

bridge between the XAM standard APIs and the 
vendor storage systems.  

We chose to use the XAM emerging standard in 
PDS since it adequately addresses many of the special 
needs of a preservation aware storage. Choosing a 
standard rather than inventing an internal layer is in 
line with the basic design principle of presentation 
systems; open standards are more likely to be robust, 
system-independent, last longer, and support 
interoperability. The preservation needs addressed by 
XAM are as follows: 

� In preservation aware storage, the metadata is 
crucial for interpreting the data retrieved and therefore 
it is at the same importance level as the data. XAM 
enables bundling large amounts of data and metadata 
in an XSet and raises data and metadata to the same 
level by representing both as XSet fields. Note that the 
OAIS defines the AIP as a working unit in the storage 
that encapsulates data and metadata. XSet may serve 
as  a "building block" for AIP complex structures. 

� Each XSet is associated with a globally 
unique ID, which enables the preserved data to be 
location independent. Furthermore, XAM has a built-
in import/export service for XSets. This in turn allows 
the preserved data to be efficiently managed and 
migrated from one system to another over time, 
facilitating transparent media and technology refresh 
cycles in long-term archives. The technology refresh 
may be done by replacing the VIM without any 
change to the application. 

� XAM is specialized for reference data that is 
written once and primarily referenced later. As 
mentioned above, each XSet field has a binding 
attribute. If this attribute is set and the value of the 
field is changed, the existing XSet remains unchanged 
(with the same XUID) and a new XSet containing the 
modified content is generated. This mechanism 
provides an easy way to generate new versions of the 
content while keeping the old version of the content 
intact. This property is important for preservation 
systems, since preservation environments mostly 
accumulate data and do not overwrite it.  

� XSets are a single transactional unit that can 
either be committed as a whole or abandoned. This is 
important, since operations on the preserved data (e.g., 
ingest), are expected to be comprised of many sub-
operations on the data and its associated metadata. For 
large amounts of data and metadata, performing 
operations such as ingest as a single transaction can 
potentially be implemented efficiently using the 
transaction support of XAM.  

� XAM has a built-in import/export service 
based on a standardized self-describing format for 
XSets. We leverage this service to create a self-

describing, self-contained format (SD-SCDF) for AIPs 
written to a portable medium. This allows media 
containing preserved data to be shared across time and 
space.  The self-describing property allows the AIPs to 
be extracted from the medium and the self-contained 
property ensures that the necessary information is 
available to interpret the data. 

� XAM provides integrated basic storage 
management capabilities such as placement 
management.  These capabilities may facilitate 
supporting different management policies in the 
preservation aware storage.   

� XAM is an emerging standard. Standards 
should be used in preservation aware storage in order 
to facilitate interoperability.  
 
4.4. Object layer 

 
As described in the previous section, the XAM 

standard provides us with a high-level storage 
abstraction needed for the preservation engine. The 
XAM library interacts with the supplied underlying 
storage system via the VIM API. The VIM maps 
XAM entities such as XSystems, XSets, XSet fields 
and their attributes to the vendor storage system 
entities.  

The selection of the storage system is driven by its 
compliance with XAM and, in addition, must also 
support the special needs of a preservation aware 
storage. While we intend to architecturally support 
both file systems and object stores via the cross-VIM 
portability of XAM, we believe that Object Stores 
(OSD) are better suited to the special needs of 
preservation aware storage:  

� In an OSD, metadata is an integral part of the 
object and is managed, stored persistently, and 
recovered with the object's data. The fact that the 
importance of the metadata penetrates all the way to 
the object layer is an advantage for the preservation 
aware storage. 

� The OSD security model provides security 
per object. This enables the use of networked storage 
while supporting fine-grained secure access control to 
the storage. In a preservation system, which stores vast 
amounts of data, the ability to store it on a scalable 
storage network is essential. 

� OSD enables us to include application hints 
that will denote OAIS “hot” attributes such as the 
attribute that links to a RepInfo object. The OSD will 
use these hints to improve storage performance and 
robustness. 

� OSD is an industry standard. Standards are 
preferred in preservation aware storage in order to 
facilitate interoperability.  



 

� OSD provides a natural and adequate 
mapping to XAM. 
 
4.5. Mapping between layers 

 
A key point in the PDS architecture is the use of 

standards in each of the layers. In the Preservation 
Engine layer, we exploit the OAIS reference model as 
the top level standard. We implement OAIS concepts 
utilizing the XAM emerging standard, which in turn is 
mapped to the OSD standard at the object layer. As a 
result, the complex structures of the OAIS 
implemented in the high-level Preservation Engine 
layer are gradually mapped to the simpler structures of 
the object layer.  In this section, we describe the 
representation of OAIS objects in the Preservation 
Engine layer and propose their mapping to the 
underlying layers. More specifically, we describe the 
representation and mapping of an AIP.  

 
4.5.1.  AIP representation in Preservation Engine.  

We define a hierarchical representation of an AIP. 
The basic building-block of an AIP is the Information 
Object, which consists of a single instance of content 
data, the raw data being preserved, and RepInfo to 
interpret the data. In the PDS architecture, the RepInfo 
is also represented by an AIP. This is done for two 
main reasons. First, being a shared resource in the 
archival storage, the RepInfo element has to be an 
independent unit identified by a unique ID. Second, 
RepInfo objects consist of content data and RepInfo 
(forming the recursive RepInfo network), and also 
need to be preserved. By representing RepInfo with an 
AIP, we can utilize an existing mechanism to preserve 
the RepInfo, while keeping the design simple. 
Consequently, each Information Object contains 
embedded data for its content and an AIP reference for 
its RepInfo. 

As depicted in Figure 3, an AIP contains elements 
of two types: Content Information and PDI, both 
inherit from the Information Object. Content 
Information is a simple Information Object. A PDI 
object is a more complex Information Object, 
containing four sub-elements (Provenance, Fixity, 
Reference and Context). OAIS does not specify 
whether these sub-elements are themselves 
Information Objects. In the PDS system, we decided 
that the PDI sub-elements should inherit from 
Information Objects because they contain data and 
RepInfo to interpret that data. For example, 
provenance data is kept in a certain format; the 
description of this format serves as the RepInfo of the 
provenance data. In other words, by representing the 
elements of the PDI themselves as Information 

Objects, we enable the PDS to use the same 
mechanism to preserve user data and its own metadata. 

 
Figure 3: Representation of AIP in 

Preservation Engine layer. AIP consists of 
Information Objects that contain data and 
RepInfo, which is also an AIP.   

 
4.5.2.  Preservation Engine Mapping to XAM.  

From a high-level perspective, an AIP is naturally 
mapped to an XSet. The AIP contains pieces of data 
and metadata bundled together under a unique ID. 
Recall that the XSet offers a unique ID (XUID) and 
may contain pieces of data and metadata stored as its 
XSet fields. 

Looking at the AIP content, an AIP is constructed 
of Information Objects. Within an Information Object, 
the content data (an opaque byte stream) is naturally 
mapped to an XStream. The RepInfo reference is 
mapped to a property of type XSet reference (XUID), 
since each RepInfo is represented by a separate AIP 
and therefore mapped to a separate XSet. 

 The challenge lies in mapping the Information 
Object itself. How do we tie together its contained 
objects to enable a sound mapping of the AIP inner-
structure while using XAM correctly? The AIP has a 
hierarchical and complex inner-structure, while XAM 
is oriented towards a flat structure and aims to contain 
many XSet fields in a single XSet.  

One option is to map each Information Object to an 
XSet. In this option, the AIP is mapped to an XSet that 
may contain two XSet references – one for the Content 
Information and one for the PDI. The PDI XSet, in 
turn, contains four XSet references (Provenance, 
Fixity, Reference and Context). Although true to the 
AIP structure, this mapping enforces the creation of 
many sparse XSets and thus does not follow the XAM 
spirit. Namely, it does not exploit the advanced 
encapsulation capability of XAM while still paying the 
overhead of maintaining complex abstractions. 



 

We chose to implement an alternative option in the 
PDS. We avoid mapping the Information Objects and 
place their contained objects directly under the AIP 
XSet as XSet fields. In this manner, the AIP 
hierarchical structure is completely flattened. A 
naming scheme maintains the grouping of XSet fields 
to Information Objects (see Figure 4). This mapping 
better exploits the XAM object structure (taking 
advantage of the fact that an XSet is a container of 
multiple fields of multiple types). Moreover, mapping 
an AIP to a single XSet enables transactional 
operations on AIPs. Operations on AIPs (e.g., ingest 
AIP) are complex and composed of many sub-
operations. Having the AIP as a single transactional 
unit guarantees executing each complex operation on 
an AIP as a single transaction. 

 
Figure 4:  Flat mapping of AIP to XSet. AIP 

maps to XSet. Content Data and RepInfo objects 
map to XSet fields. Their grouping to Information 
Objects (illustrated by the broken lines) is kept by 
a naming scheme. 

 
Above, we suggested that each content data 

naturally maps to an XStream, assuming that the 
content data is an opaque byte stream. This 
assumption is correct for the Content Information data. 
However, the PDI sub-objects’ data have a complex 
inner-structure. Fixity and provenance data consist of a 
series of events, whereas context data contains 
different pieces of data and references. If each such 
data is mapped to a single XStream, we will incur 
additional complexity in parsing these XStreams on 
each access. Nevertheless, such an implementation 
would keep the mapping simple. 

An alternative is to map each such data to a group 
of XSet fields, parsing the data at the XAM level. This 
means each piece of data or reference (e.g., each 
provenance event) is mapped to a separate XSet field. 
The mapping is more complicated, but enables easy 
search and access to these pieces of data and reference. 

We also looked into which XAM attribute values 
should be assigned to each XSet field, in particular the 
use of the ”binding” vs. ”non-binding” qualifier of 
XSet fields. Recall that by setting a binding attribute 
to a field, XAM implies that any edit/addition/removal 
of this field results in the automatic creation of a new 
XSet. Hence, the binding qualifier determines the 
conditions and/or events under which a new AIP will 
be generated.  

Since any change to the Content Information will 
result in the creation of a new version of the AIP while 
keeping the original AIP intact, we map the Content 
Information’s content data and RepInfo as binding 
objects. The RepInfo of the PDI sub-objects are also 
set to binding. For example, a change to the fixity 
RepInfo may be an update of the fixity algorithm and 
should cause the creation of a new version of the AIP. 

On the other hand, the handling of PDI sub-objects’ 
data is more complex. For example, we believe that 
unlike external provenance events (e.g., a change of 
ownership) that should cause the creation of a new 
AIP, the internal generation of provenance events 
should not. Such an internal event may occur during 
media migration, where a provenance event is added 
by the Preservation Engine to document the migration. 
Therefore, if provenance data is mapped to a single 
XStream, it should map as non-binding. When 
external events are added, the creation of the new XSet 
must be handled by the Preservation Engine layer 
since it will not be automatically handled by XAM. If 
each provenance event is mapped to a separate 
XStream, external events map as binding while 
internal events map as non-binding.  

One benefit of the use of XAM as described above 
is in supporting a self-describing, self-contained data 
format (SD-SCDF) for AIPs written to a portable 
medium.  A cluster of AIPs is mapped to a XAM 
object (XSet) with properties that include references to 
the various AIPs in the cluster. By that, we take 
advantage of the XAM export format and propose that 
one way to implement SD-SCDF will be to use XML-
binary Optimized Packaging (XOP). The SD-SCDF 
will include the references and offsets to the various 
AIPs of the cluster, followed by an attachment that 
includes a serialization of each AIP. This allows 
parallel access to the AIPs if desired. The serialized 
AIP will follow the mapping to XAM objects and 
include a description of the compact parts of the AIP 
(e.g. references to the various RepInfos), followed by 
a table of contents attachment to list the offsets to each 
of the streams. The table of contents is followed by a 
MIME attachment for each one of the streams (e.g., 
content data object stream, reference data stream, 
provenance stream, context stream, fixity stream).  



 

Note, the SD-SCDF format has by its own RepInfo 
that needs to be preserved, such as the specifications 
of XOP, MIME, XAM, etc.  

 
4.5.3.  XAM mapping to OSD. There is an ongoing 
effort in the OSD working group in SNIA to propose a 
mapping of the XAM standard to OSD.  To date, the 
work that has been done offers a mapping of XAM 
objects and their attributes to OSD objects and 
attributes. Other issues, such as security, have not yet 
been addressed. 

The XAM to OSD mapping to be used in the PDS 
system is based on the SNIA proposal and is generic; 
namely, it has no preservation specific characteristics. 
It aims to provide a natural and efficient backend 
support to XAM. 

 
5. Discussion and future work 

 
The Preservation DataStores architecture proposed 

in this paper is currently under prototype 
implementation. The implementation will be tested 
and validated within the CASPAR project with large 
heterogeneous data sets provided by our CASPAR 
partners. This includes earth observation data from the 
European Space Agency and cultural data from 
UNESCO and artistic data. These testbeds are of 
diverse formats including text, binary, imaging, videos 
from diverse domains including scientific, cultural and 
artistic domains.  

One of the difficult issues in preservation systems 
is its validation methods. How do you validate today 
that your system actually preserves data for a long 
time when the future is unpredictable? A primary 
objective of the CASPAR project is to design such 
validation methods; these methods will also be utilized 
for PDS validation. 

Another issue for future exploration is the use of 
PDS in a federated environment that replicates data 
across multiple independent storage systems to 
support bit preservation. In addition, the federated 
environment maintains indexes to facilitate fast access 
to the data. Those indexes can be in databases for 
structured data or can be inverted lists type of indexes 
for unstructured data. Some open issues in this area 
include how to generate a federated index for the data, 
how to preserve the index, how to update the search 
methods as they evolve in the future, should the index 
be co-located with the data or managed separately 
from the data, and so forth.  

 
 
 
 

6. Conclusions 
 
There is an increasing need for preservation 

systems that can preserve myriad types of information 
for tens and hundreds of years. Such systems will be 
more robust and have a lower probability of data 
corruption or loss if they utilize a storage component 
with built-in support for preservation.  

In this paper we describe Preservation DataStores, a 
novel storage architecture for OAIS-based 
preservation aware storage. The architecture is 
currently under development as an infrastructure 
component of the CASPAR project. It is a stacked 
architecture composed of three layers: the preservation 
layer, the compound object layer and the stored object 
layer. The architecture is based on three open 
standards, the OAIS, XAM and OSD, which are linked 
via generic mappings.  

This architecture transforms the logical concept of 
an information object, which is a basic block in 
preservation systems, into a physical storage object. 
This allows the storage component to “understand” 
OAIS structures and functions. This knowledge, when 
propagated down to the storage layer, can lead to 
optimized and more robust implementations. 

A key design point in this architecture is the choice 
of open standards. Choosing standards rather than 
inventing components is in line with the basic design 
principle of preservation systems in general; open 
standards are more likely to be robust, system-
independent, last longer, and support interoperability.  

Finally, this paper introduces the idea of marrying 
the OAIS with the XAM model. As such, this is a 
demonstration of a first application of the new and 
emerging XAM model.   
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