

Preservation DataStores: Architecture for Preservation Aware Storage

Michael Factor, Dalit Naor, Simona Rabinovici-Cohen,
Leeat Ramati, Petra Reshef, Julian Satran

IBM Haifa Research Lab
{factor, dalit, simona, leeat, petra, satran}@il.ibm.com

David L. Giaretta

Science and Technology Facilities Council
d.l.giaretta@rl.ac.uk

Abstract

 The volumes of digital information are growing
continuously and most of today’s information is “born
digital”. Alongside this trend, business, scientific,
artistic and cultural needs require much of this
information to be kept for decades, centuries or
longer. The convergence of these two trends implies
the need for storage systems that support very long
term preservation for digital information. We describe
Preservation DataStores, a novel storage architecture
to support digital preservation. It is a layered
architecture that builds upon open standards, along
with the OAIS, XAM and OSD standards. This new
architecture transforms the logical information-object,
a basic concept in preservation systems, into a
physical storage object. The transformation allows
more robust and optimized implementations for
preservation aware storage. The architecture of
Preservation DataStores is being developed as an
infrastructure component of the CASPAR project* and
will be tested in the context of this project using
scientific, cultural, and artistic data.

*Work partially supported by European Community under the
Information Society Technologies (IST) program of the 6th FP for
RTD - project CASPAR contract IST-033572. The authors are
solely responsible for the content of this paper. It does not represent
the opinion of the European Community, and the European
Community is not responsible for any use that might be made of
data appearing therein.

1. Introduction

The growth of long-lived digital information, along

with new compliance regulations such as HIPAA,
Sarbanes-Oxley, OSHA and other federal securities
laws and regulations, demand the long-term viability
of data. Other types of data must be preserved for the
benefit of humankind. Just some examples include
earth observation data from the European space
agency and cultural heritage data from UNESCO,
which must be kept for decades, centuries, or longer.
Additionally, the amount of long-lived data is
expected to grow as more digital devices generate vast
amounts of born-digital data. This increases the need
for digital preservation systems to preserve a myriad
of information types including scientific, financial,
healthcare, artistic, and cultural data—for tens and
hundreds of years. Most of this information is
reference data; it hardly changes once written. Due to
its nature, this kind of data is typically accessed
infrequently. Consequently, preservation systems
generally utilize near-line and offline storage.

The digital preservation challenge can be divided
into “bit preservation” and “logical preservation”. Bit
preservation is the ability to restore the bits in the
presence of storage media degradation or
obsolescence, physical destruction by a malicious user,
or even environmental catastrophes such as fire and
flooding. Logical preservation involves preserving the
understandability and usability of the data, despite
logical attacks that may occur or unknown future
changes that will take place in technologies and users.
The data needs to be properly accessed and interpreted
in the far future when current technologies for servers,
operating systems, data management products and
applications may no longer exist. Additionally, logical

preservation needs to maintain the provenance of the
data, along with its authenticity and integrity, and
ensure that only legitimate users will access it.

While the issues surrounding bit preservation are
well understood and can be supported by some
products, logical preservation is still an open research
area. A core standard for digital preservation systems
is the Open Archival Information System (OAIS) [1],
an ISO standard since 2003 (ISO 14721:2003 OAIS).
This standard concentrates on logical preservation and
specifies the terms, concepts, and reference models to
be used in a system dedicated to preserving digital
assets for a dedicated user group that needs to access
and understand the information preserved (designated
community). OAIS is a high-level reference model,
which means it is flexible enough to be used in a wide
variety of environments. However, more detailed steps
and workflow stages need to be developed for its
implementation.

OAIS defines logical preservation as a recursive
problem; in addition to storing the raw data, it must
also store the separately-born (in time and place)
metadata that helps interpret and use the raw data.
Moreover, this metadata (representation information)
may recursively need additional metadata to help
interpret it. The recursion ends when the
representation information is non-digital and preserved
by the designated community. To further support
logical preservation, OAIS defines additional metadata
that is associated with the raw data and describes its
context, logs its provenance, and ensures its data
integrity (fixity).

At the heart of any solution to the preservation
problem, resides a storage component, which is the
permanent location of the information. Traditional
archival storage considers only bit preservation, if it
considers preservation issues at all, and generally has
functions to insert data into permanent storage,
manage a storage hierarchy, refresh media on which
archive holdings are stored, perform routine and
special error checking, provide disaster recovery
capabilities, and retrieve data from the permanent
storage.

We have already laid the foundation for the concept
of preservation aware storage [2], which supports
logical preservation in addition to bit preservation. In
this paper, we provide an architecture to support this
concept. Previously [2], we argued that the traditional
archival storage should be enhanced with additional
functionalities oriented towards logical preservation.
Preservation aware storage encapsulates the raw data
with its complex interrelated metadata objects, so they
are inseparable during the migration process and
future data access. Preservation aware storage also
adds more functions to the storage component. It

decreases the amount of data transfers between
applications and the storage by offloading data
intensive functions, such as fixity computations, to the
storage. In addition, preservation aware storage
simplifies applications by transferring the
responsibility of managing the storage-related events,
such as provenance events, to the storage itself.
Finally, preservation aware storage handles migration
internally, including the ability to execute externally-
specified logical transformations.

Our main contribution in this paper is the definition
of an architecture for preservation aware storage:
Preservation DataStores (PDS). PDS is a significant
advance over traditional storage, which is oblivious to
the needs of logical preservation. In contrast to
traditional block or file storage, or even traditional
archival systems, PDS materializes the logical concept
of a preservation information-object into a physical
storage object. It defines a way to ensure the grouping
of metadata with data, supports functions such as
provenance and fixity that are close to the data, and
supports the execution of transformations during
physical migrations. PDS is a layered architecture
based on open standards and, as such, is compliant
with the general design principle of preservation
systems that employ open standards where possible.
We are developing Preservation DataStores as an
infrastructure component of CASPAR, a European
Union project that focuses on the preservation of data
for very long periods of time [3]. CASPAR is building
a framework to support the end-to-end preservation
”lifecycle” for scientific, artistic, and cultural
information based on existing and emerging standards,
most notably the OAIS model.

In the rest of this paper, we review the concept of
preservation aware storage and the requirements a
preservation aware storage must address. We then
describe the PDS architecture, which aims to address
those requirements. PDS builds on a set of standard-
based layers (OAIS, XAM and OSD) with generic
mappings between the layers. The described mappings
have merits beyond preservation and may be used for
other types of applications as well. We conclude with
a discussion of future work and a summary.

2. Related work

The storage aspect of digital preservation has been
attracting more attention lately [4, 5, 6, 7] and this
trend is likely to increase. Storer et al. [7] describe
both existing security threats (e.g., integrity,
authentication and privacy) and new specific threats
(e.g., slow attacks) that arise when storing data for
long periods of time. Furthermore, the work examines

how existing systems address these concerns to ensure
long term survivability. Baker et al. [5] present the key
differences between enterprise systems and long term
storage systems in terms of requirements and threats.
The work provides several architectural solutions that
focus on replication across autonomous sites, reduced
per-site engineering costs, and the ability to scale over
time and different technologies. Baker et al. [4]
explore the needs and threats related to the long-term
storage of digital information. They describe an
extended reliability model and discuss several
strategies to reduce data loss. The work suggests a
possible system architecture that incorporates the
different strategies and aims at balancing the different
tradeoffs. All of the studies mentioned above
concentrate primarily on bit preservation, suggesting
how traditional storage systems can address the new
challenges posed by long-term bit preservation but do
not address the logical preservation aspects.

The Storage Resource Broker (SRB) [6, 8, 9] is a
data grid technology developed by the San Diego
Supercomputing Center (SDSC). SRB is middleware
built on top of standard file systems, commercial
archives, and storage systems. It manages distributed
data, enabling the creation of data grids that focus on
the sharing of data. SRB was recently extended to
directly support archives that focus on the preservation
of data from the bit preservation perspective. The SRB
stores the data records (content) as files on the storage
system repository; a separate database is used to store
the metadata (context) related to the electronic record
and the data grid is used to maintain the association
between the content and context. The data grid
technology also includes support for managing and
replicating data on remote storage systems, a uniform
name space for referencing the data, a federated
catalog for managing information about the data, and
mechanisms for interfacing to the preferred access
method. SRB has been used as a foundation
technology in the context of several preservation
projects; many of them were commissioned by the
National Archives and Records Administration
(NARA) and supported by the Library of Congress
and NSF. The SRB code was recently extended into a
new system called iRODS [10], Intelligent Rule-
Oriented Data management System. Its rule engine can
be useful for implementing preservation-specific
policies.

The e-depot digital archiving system of the
National Library of the Netherlands (KB) is described
by Oltmans et al. [11]. The main component of e-
depot is the Digital Information Archiving System
(DIAS) from IBM. DIAS provides an open deposit
library solution for storing and retrieving electronic
documents and multimedia files. The e-depot library

conforms to the OAIS standard and supports physical
and logical digital preservation. The paper describes
the design of an extension to DIAS called Preservation
Manager, which manages and stores the metadata
associated with the preserved digital content. The
content and metadata are ingested into DIAS, where
the content is assigned a unique identifier. However,
although the content bit stream is stored in the archive,
the metadata associated with it is stored in the KB
catalog, which is in a physically separate location.

Like many other systems, both SRB and DIAS
keep the metadata in a database that is separate from
the content. Our approach stores the metadata along
with the raw data managed by the storage itself. This
encapsulation keeps the data and the metadata tied
together as the bits of the preserved data change (e.g.,
migrations). The physical co-location is a key
characteristic; it allows graceful loss of data and thus
reduces the chances of losing the ability to interpret
the data.

One of the intriguing approaches to digital
preservation is the Universal Virtual Computer (UVC)
[�12]. It employs the emulation approach and aims to
allow digital objects to be retained in their original
format. To enable the interpretation of the object in the
future, a program that can decode the data and present
it in an understandable form is also kept. UVC and the
emulation approach complement our approach and can
be used as additional representation information in a
preservation aware storage.

Recently, we have observed an emerging
technology trend where functions such as bit-to-bit
data migration, block-level data integrity, and even
encryption, are carried out by advanced, intelligent
disks and tapes. Some systems, such as the
provenance-aware storage system (PASS) [13], track
the provenance of data at the storage level rather than
managing it in a standalone database. PASS is
prototyped at the file system level and demonstrates
the advantages of managing provenance at the storage
system level.

Long-term security aspects are further explored in
the POTSHARDS [14] system, which provides secure
long-term storage without encryption. The
POTSHARDS system shifts data secrecy from
encryption to authentication by using secret splitting
across multiple authentication domains. Furthermore,
since data retrieval methods cannot rely upon external
indexes, approximate pointers between independent
archives are utilized to ensure availability.

Several other efforts [15, 16] provide further
motivation for solving the general data preservation
problem as well as requirements for the overall
preservation system. The National Digital Information
Infrastructure and Preservation Program (NDIIPP)

[17] is a collaborative initiative run by the Library of
Congress. Its goal is to develop a national strategy for
digital preservation. NDIIPP develops a rich set of
formats appropriate for preservation and provides a
high level architecture. The architecture emphasizes
the need to support a federation of archives but does
not refer to specific storage aspects or functionalities
of the system.

3. Preservation aware storage

This section briefly summarizes the concept of
preservation aware storage [2]. Preservation aware
storage serves as the foundation for the architecture
proposed in this paper.

The storage component is an important part of
preservation systems. This is the portion of the system
that manages the long-term storage and maintenance
of digital material. We argue [2] that digital
preservation systems will be more robust and have a
lower probability for data corruption or loss if they
offload preservation related functionality to the storage
layer. This offloading enables the storage layer to
reduce the amount of data transfers to applications and
improve its own data placement in favour of
preservation. We use the term preservation aware
storage to describe such a storage component with a
built-in support for preservation. OAIS-based storage
is a specific type of preservation aware storage, based
on OAIS notions and its functional and information
models.

The main OAIS concept relevant to storage is the
Archival Information Package (AIP) depicted in
Figure 1.

Figure 1. OAIS AIP logical structure

An AIP contains zero or one content information

parts, which include the raw data and its interpretation,
and one or more Preservation Description Information
(PDI) parts, which provide additional metadata related
to the content logical preservation. More specifically,
content information contains the Content Data Object
(the raw data) that is the focus of the preservation, plus
the Representation Information (RepInfo), which is

needed to render the object intelligible to its
designated community. This may include information
regarding the hardware and software environment
needed to view the content data object. Note that the
RepInfo is a recursive object and may have additional
RepInfo to interpret itself. This recursion ends when
facing a RepInfo that is non-digital and will be
preserved by the designated community. For example,
astronomical data represented in a FITS file is
associated with RepInfo that includes a dictionary to
describe the FITS keywords. The FITS dictionary is
associated with RepInfo that includes the dictionary
structure specification. Assuming the dictionary
specification is in XML, its RepInfo includes the XML
specification, and the latter is associated with a
RepInfo that includes the unicode specification. We
assume that the unicode specification is preserved by
the designated community and thus it doesn’t need
more RepInfo.

The PDI is further divided into four sections:
reference (globally unique and persistent identifiers),
provenance (chain of custody, the history and the
origin of the content information custody), context
(relationships of the content information to its
environment), and fixity (a demonstration that the
particular content information has not been altered in
an undocumented manner).

The following list is a refinement of our previous
work [2] and includes the major requirements and
desired features of an OAIS-based preservation aware
storage:

� In the storage, encapsulate and physically
co-locate the raw data and its complex interrelated
metadata objects, such as representation information,
provenance, and fixity. This ensures that the metadata
needed for interpretation is not separated from the raw
data and thus never lost (if the raw data survives).

� Include the representation information of
metadata (e.g., representation information of fixity and
provenance) so the metadata can be interpreted when
accessed in the future.

� Utilize the locality property and execute data
intensive functions such as fixity (i.e., data integrity)
computations within the storage component.

� Handle some of the provenance events
internally. The applications on top of the preservation
aware storage should be free of managing events that
can be handled internally in the storage. Moreover,
this enables richer types of provenance events and the
inclusion of events related to the migration between
physical medium and the transformation of
representations.

� Support the loading and execution of
external transformations during the migration process

and facilitate on demand triggering of these
transformations.

� Support media migration, as opposed to
system migration. In media migration, performing
migration from one system to another can be done by
physically detaching the media from one system and
attaching it to the new system.

� Maintain referential integrity including
updating all the links during the migration process so
they remain valid in the new system. This requires an
awareness of certain metadata fields that represent
links, both internally to the system and externally.

� Ensure readability of the data by a different
system in the future. This is done by developing and
supporting global self-describing media independent
formats.

� Support a graceful loss of data. Some
portions of the data are likely to be lost or become
corrupted over time. If some data is lost, a good
preservation system must minimize the economic
effect of this data loss and prevent cases where data
that is still intact in the system cannot be read or
interpreted.

From among these requirements, we focused on
supporting logical preservation; however, as should be
clear, there is often an interdependency and interaction
between logical and bit preservation (e.g., the
interactions between migration to new media and
transformations of formats).

4. Preservation DataStores: preservation

aware storage architecture

Preservation DataStores (PDS) are OAIS-based
preservation aware storage that focus on supporting
logical preservation. They are aware of the structure of
an archival information package (AIP) and offload
OAIS derived generic functions such as representation
information inclusion, provenance tracking, fixity
computation, and migration support to the storage
layer. They provide strong encapsulation of large
quantities of metadata with the data at the storage level
and enable easy migration of the preserved data across
storage devices.

4.1. Architecture overview

The PDS architecture includes a stack of three

layers based on OAIS, XAM and OSD, respectively.

Figure 2 depicts the general architecture of PDS. The
top layer is an OAIS-based preservation engine, which
provides preservation functionality for heterogeneous
data and applications. It includes efficient generation
and placement of AIPs along with support for
migration and data transformations performed within
the storage. The second layer includes an eXtensible
Access Method (XAM) [18] library. XAM is an
emerging storage standard intended for reference
information that provides a logical abstraction for data
containers. The bottom layer includes an Object-based
Storage Device (OSD) [19, 20], an advanced type of
storage implementing an object-based interface that
has a built-in access control mechanism.

In OAIS, AIPs are the information objects that are
passed to and from the storage component. Our PDS
supports both a direct API as well as a web services
API. We chose a standards-based web services API
since web services are platform independent and
support clients built within different environments;
this is an important feature in preservation
environments.

Our proposed PDS is constructed of two processes.
The higher level process includes the upper two layers
and is responsible for implementing OAIS functions,
providing the interface to the outside world, and
incorporating XAM functionality. The lower level
process includes the bottom layer and provides the
storage in the form of the object store.

The higher level process is composed of a stack of
the following components:

� Preservation Engine – provides the external
interface and the OAIS specific preservation
semantics.

� XAM Library – generates logical container
objects of data and metadata under a common globally
unique name.

� XAM to OSD – a bridge that maps the
logical XAM objects to physical OSD.

Since the higher level process needs to support
HTTP, web services, and security, to interface with
clients of the PDS, the box may utilize an application
server. Offloading an application server to the storage
box supports the new paradigm of moving the
application to the data instead of the traditional
paradigm of moving the data to the application.

Figure 2. Preservation DataStores architecture

The second process in the PDS box serves as the

object layer and includes an OSD component. The
OSD process requires periodical communication with
the security admin, an external component used to
obtain security credentials that enforce access control.
In the proposed architecture, the OSD calls a third-
party security admin via an API or web services.

The object-layer can also be materialized using a
standard file system as the underlying storage instead
of an OSD. The chosen architecture builds on an OSD
as its object-layer since an OSD is naturally designed
to support an object store layer [21]. It handles and
manages the space allocation of an object and it
associates attributes at the storage level in an optimal
manner. This allows optimizations such as placing
some key OAIS attributes (e.g., a link to the
representation information) close to the data in a
persistent manner. Furthermore, in cases where the
actual disks are network attached, an OSD provides
object-level secure access control to networked disks.

4.2. Preservation Engine layer

The preservation engine component provides the

external API, implements the OAIS abstractions and
provides the preservation characteristics. In this
section, we describe the unique features supported by

the preservation engine layer and elaborate on the
value of realizing them in the storage. A policy
manager, either internal or external will drive the
application of these features.

In addition to these specific features, a major role
of the preservation engine layer is to perform a
mapping between the different layers of abstraction.
At the top, the preservation engine layer uses OAIS
concepts to communicate with its clients. In turn, the
preservation engine builds upon XAM underneath to
implement its function. Thus it must map between the
OAIS and XAM levels of abstraction. We describe
this mapping in detail in Section 4.5.1.

4.2.1. Managing availability/data loss. One key
responsibility of the preservation aware storage is to
manage the availability of the data entrusted to the
storage. Traditional storage systems manage data
availability (e.g., RAID, remote mirroring etc.) at the
block level. Instead, PDS must manage availability at
a higher level, specifically at the level of an AIP. A
basic assumption is that some data will be lost over
time; thus a basic requirement is that the degree of
information loss should be proportional to the number
of bits lost. This is difficult to achieve with systems
that provide availability at the block level.

Not all entities stored by the PDS are of equal
importance. For example, some content data objects
may have very high inherent value and some metadata
(e.g., representation information for a common format)
may be the key to interpreting large amounts of data.
We expect that a policy manager will direct the PDS
regarding the inherent importance of the content data
objects while the PDS itself can determine the
importance of the metadata it manages. Propagating
this knowledge to the PDS allows the storage system
to employ techniques such as grouping related objects
and creating copies of objects, both within a medium
and across media.

For composite objects such as AIPs, if any sub-
component is lost, access to the entire composite may
be lost. This is of particular importance when dealing
with data stored using offline media (e.g., tapes),
which can be physically moved between locations. To
reduce the risk of data loss, the AIP sub-objects are
placed together physically. The preservation engine
layer aggregates the AIPs into clusters, such that each
cluster is self-contained, namely AIPs that reference
each other are put on the same cluster. Then, each
cluster is placed on the same media unit (e.g., tape
volume) to maintain physical co-location. The media
unit can sometimes be a logical unit (e.g., three
adjacent tape volumes), but we avoid situations where
the data is completely distributed. In addition to this
co-location of related data, the PDS may also make
physical copies of information that is deemed of high
importance.

The alternative to having the PDS manage the
availability of AIPs would be to have the client of the
storage manage the physical organization of the data.
Such a breaking of abstraction would greatly increase
the complexity of the client and would be a step
backwards since in most applications the application is
not aware of the physical data placement.

4.2.2. AIP transformations. Another key aspect of
long term digital preservation is the need to migrate
data objects being preserved. This may be triggered by
changes such as media decay, obsolescence of
hardware or software, or a change in the copyright or
external environment (e.g., organization). Some types
of migration entail simply copying a set of bits from
one medium to another to ensure the bits are
preserved. It is natural for this type of migration to be
handled by the storage, since the storage is aware of
the media characteristics and can monitor the health of
the media. It also saves bandwidth because the data
does not need to be read by a client and written by the
client to a different media.

Another type of migration is transformation, which
is the focus of logical preservation. Transformations

involve changing the bits of an existing data object
(e.g., transforming data in a format that is about to
become obsolete into the replacing format). While the
storage should not be aware of the semantics of the
transformation, it is natural for the storage to apply the
transformations. This can be done at the same time as
data is migrated for bit preservation, saving accesses
to the physical medium. Alternatively, it can be done
on demand; prior to returning an AIP to the client, the
format can be transformed into one the client
recognizes. The storage should support
transformations since this is a data intensive function
and it can improve overall system performance by
performing the computation for the transformation
close to the storage. It also minimizes the risk of data
loss involved in massive data transfers for
transformation purposes.

4.2.3. AIP identifier generation. An AIP must have
a persistent globally unique identifier. In PDS, this
identifier is composed of a logical ID, a copy number
and a version number. The logical ID is the same
identifier for all the copies and versions of the same
AIP, and can be used to find the AIP in the
preservation system. It can be constructed using a
standard for persistent identifiers such as Digital
Object Identifier (DOI). The copy number identifies
the various copies of the same bit-wise AIPs while the
version number identifies the various versions
originating from the same AIP (i.e., transformations
create new versions of AIPs).

It is important for the AIP ID generation to be
supported by the preservation storage for two reasons.
First, the preservation storage is a centralized resource
used by all preservation clients and thus is a natural
location for ensuring the uniqueness of IDs. Second,
as described above, the preservation storage will at
times create new AIPs, either through transformations
or through copying. Since it is creating new AIPs
based upon existing AIPs, it is natural for the
generation of the AIP ID to be handled by the storage.

4.2.4. Storlet container. Digital preservation systems
need to periodically perform data validation and data
transformation procedures. To perform these data-
intensive tasks, traditional systems move the data
across the network to the application side. Once the
procedures complete, the system moves the data back
to the storage component. Similar to the ABACUS
system [22] and active disks [23], we propose to better
utilize the locality property and perform these data
intensive procedures within the storage. Therefore, the
preservation engine includes a module container that
can embed and execute restricted modules with pre-
defined interfaces. We use the term ‘storlets’ (like

applets in applications and servlets in servers) to
describe these deployable restricted modules. Storlets,
such as transformation modules and fixity
computation modules, can be deployed in PDS and
later on executed either periodically or when explicitly
triggered.

4.2.5. Manage preservation specific metadata.
OAIS specifies a set of metadata that is needed for
AIPs. By having the management, and in some cases
the computation, of this metadata handled by the
storage component, we can offload work from the
client, avoid transferring data back and forth between
clients and the PDS, and ensure a consistent and
correct implementation

One important set of metadata is the Preservation
Description Information (PDI). The PDI includes the
fixity (an integrity check value). Computing the fixity
within the PDS prevents unnecessary data transfers
and ensures a consistent implementation for all
objects. In addition, the PDS will be executing data
transformations, which change the fixity value; hence,
we need to know how to calculate fixity. The fixity
algorithm may be updated by the user (using the
storlet container) or chosen when there are several
options.

Provenance is a second class of metadata in the
PDI. Provenance events may be triggered internally
(e.g., replication, transformation, etc.), making it
natural to manage the provenance data within the
storage. Other events, such as a change of ownership,
are triggered from outside the archival storage and an
API is called to inform the preservation engine of the
event. If the AIP was already moved to offline media,
the preservation engine records the provenance events
that occur between migrations and is responsible for
updating the preservation data on the next migration.
If the AIP is online, the updates may take place upon
occurrence.

Another important class of preservation-specific
metadata is Representation Information (RepInfo),
which is the metadata needed to interpret the content
data that is being preserved. The RepInfo is by itself
an AIP, which can be referenced by multiple other
AIPs. The RepInfo includes references to additional
RepInfos needed to interpret it. This forms a RepInfo
network where some of its links may refer to RepInfos
stored in external registries. To ensure the availability
of the data it manages, the PDS validates the external
RepInfo links and optionally copies them from the
external registries to the PDS to maintain physical co-
location (as described above). Multiple AIPs with the
same RepInfo should be clustered together on the
same medium. This allows the system to share the
RepInfo among content objects with the same

representation and manage the availability of the
RepInfo by creating the appropriate number of copies.
Since the storage layer is aware of the mapping of data
to physical media, it is natural to have the management
of RepInfo offloaded to the storage.

The Preservation Description Information (PDI)
has a special kind of RepInfo. This is the
representation information for the metadata generated
by the preservation engine itself and thus should be
managed by the storage component.

The PDS also ensures the referential integrity of the
links in the PDI and RepInfo elements. This includes
links to external registries, URLs, and AIP IDs. Each
of these references needs to be validated. This
validation should take place on ingest, access, and
each time the AIP is accepted into the system (during
ingestion, transformation etc.). This validation of
referential integrity is essential in ensuring the
availability of the data.

4.3. XAM layer

While PDS exposes high level complex logical
objects such as AIP, existing storage systems (object,
file or block) expose much lower-level interfaces and
do not provide the necessary abstractions. Our
architecture uses a middle-layer of abstraction to
mediate between the lower storage system and the
preservation engine. We chose to base this mid-layer
on XAM [18]. This section describes XAM and why
it was chosen as the mid-layer abstraction in the PDS
architecture.

A XAM storage system contains one or more
XSystems, where each XSystem is a logical container
of XSet records. An XSet, which is the basic artifact in
XAM, is a data structure that packages multiple pieces
of XSet fields (data and metadata), all bundled together
for access under a common globally unique external
name, called an XUID. There are two types of XSet
fields: property fields that usually contain metadata
and XStream fields that contain unbounded byte
streams of a valid MIME-type. Each XSet field has a
fixed set of attributes that are manipulated via get/set
methods.

The XAM architecture allows applications to use
the XAM API to store and retrieve information in a
vendor-independent and location-independent manner.
The top software module in the XAM architecture is
the XAM library, which exposes the XAM API. This
module interacts with the application and provides a
view of the underlying storage through the entities of
the XAM world. Under the XAM library resides the
Vendor Interface Module (VIM), which acts as a

bridge between the XAM standard APIs and the
vendor storage systems.

We chose to use the XAM emerging standard in
PDS since it adequately addresses many of the special
needs of a preservation aware storage. Choosing a
standard rather than inventing an internal layer is in
line with the basic design principle of presentation
systems; open standards are more likely to be robust,
system-independent, last longer, and support
interoperability. The preservation needs addressed by
XAM are as follows:

� In preservation aware storage, the metadata is
crucial for interpreting the data retrieved and therefore
it is at the same importance level as the data. XAM
enables bundling large amounts of data and metadata
in an XSet and raises data and metadata to the same
level by representing both as XSet fields. Note that the
OAIS defines the AIP as a working unit in the storage
that encapsulates data and metadata. XSet may serve
as a "building block" for AIP complex structures.

� Each XSet is associated with a globally
unique ID, which enables the preserved data to be
location independent. Furthermore, XAM has a built-
in import/export service for XSets. This in turn allows
the preserved data to be efficiently managed and
migrated from one system to another over time,
facilitating transparent media and technology refresh
cycles in long-term archives. The technology refresh
may be done by replacing the VIM without any
change to the application.

� XAM is specialized for reference data that is
written once and primarily referenced later. As
mentioned above, each XSet field has a binding
attribute. If this attribute is set and the value of the
field is changed, the existing XSet remains unchanged
(with the same XUID) and a new XSet containing the
modified content is generated. This mechanism
provides an easy way to generate new versions of the
content while keeping the old version of the content
intact. This property is important for preservation
systems, since preservation environments mostly
accumulate data and do not overwrite it.

� XSets are a single transactional unit that can
either be committed as a whole or abandoned. This is
important, since operations on the preserved data (e.g.,
ingest), are expected to be comprised of many sub-
operations on the data and its associated metadata. For
large amounts of data and metadata, performing
operations such as ingest as a single transaction can
potentially be implemented efficiently using the
transaction support of XAM.

� XAM has a built-in import/export service
based on a standardized self-describing format for
XSets. We leverage this service to create a self-

describing, self-contained format (SD-SCDF) for AIPs
written to a portable medium. This allows media
containing preserved data to be shared across time and
space. The self-describing property allows the AIPs to
be extracted from the medium and the self-contained
property ensures that the necessary information is
available to interpret the data.

� XAM provides integrated basic storage
management capabilities such as placement
management. These capabilities may facilitate
supporting different management policies in the
preservation aware storage.

� XAM is an emerging standard. Standards
should be used in preservation aware storage in order
to facilitate interoperability.

4.4. Object layer

As described in the previous section, the XAM

standard provides us with a high-level storage
abstraction needed for the preservation engine. The
XAM library interacts with the supplied underlying
storage system via the VIM API. The VIM maps
XAM entities such as XSystems, XSets, XSet fields
and their attributes to the vendor storage system
entities.

The selection of the storage system is driven by its
compliance with XAM and, in addition, must also
support the special needs of a preservation aware
storage. While we intend to architecturally support
both file systems and object stores via the cross-VIM
portability of XAM, we believe that Object Stores
(OSD) are better suited to the special needs of
preservation aware storage:

� In an OSD, metadata is an integral part of the
object and is managed, stored persistently, and
recovered with the object's data. The fact that the
importance of the metadata penetrates all the way to
the object layer is an advantage for the preservation
aware storage.

� The OSD security model provides security
per object. This enables the use of networked storage
while supporting fine-grained secure access control to
the storage. In a preservation system, which stores vast
amounts of data, the ability to store it on a scalable
storage network is essential.

� OSD enables us to include application hints
that will denote OAIS “hot” attributes such as the
attribute that links to a RepInfo object. The OSD will
use these hints to improve storage performance and
robustness.

� OSD is an industry standard. Standards are
preferred in preservation aware storage in order to
facilitate interoperability.

� OSD provides a natural and adequate
mapping to XAM.

4.5. Mapping between layers

A key point in the PDS architecture is the use of

standards in each of the layers. In the Preservation
Engine layer, we exploit the OAIS reference model as
the top level standard. We implement OAIS concepts
utilizing the XAM emerging standard, which in turn is
mapped to the OSD standard at the object layer. As a
result, the complex structures of the OAIS
implemented in the high-level Preservation Engine
layer are gradually mapped to the simpler structures of
the object layer. In this section, we describe the
representation of OAIS objects in the Preservation
Engine layer and propose their mapping to the
underlying layers. More specifically, we describe the
representation and mapping of an AIP.

4.5.1. AIP representation in Preservation Engine.

We define a hierarchical representation of an AIP.
The basic building-block of an AIP is the Information
Object, which consists of a single instance of content
data, the raw data being preserved, and RepInfo to
interpret the data. In the PDS architecture, the RepInfo
is also represented by an AIP. This is done for two
main reasons. First, being a shared resource in the
archival storage, the RepInfo element has to be an
independent unit identified by a unique ID. Second,
RepInfo objects consist of content data and RepInfo
(forming the recursive RepInfo network), and also
need to be preserved. By representing RepInfo with an
AIP, we can utilize an existing mechanism to preserve
the RepInfo, while keeping the design simple.
Consequently, each Information Object contains
embedded data for its content and an AIP reference for
its RepInfo.

As depicted in Figure 3, an AIP contains elements
of two types: Content Information and PDI, both
inherit from the Information Object. Content
Information is a simple Information Object. A PDI
object is a more complex Information Object,
containing four sub-elements (Provenance, Fixity,
Reference and Context). OAIS does not specify
whether these sub-elements are themselves
Information Objects. In the PDS system, we decided
that the PDI sub-elements should inherit from
Information Objects because they contain data and
RepInfo to interpret that data. For example,
provenance data is kept in a certain format; the
description of this format serves as the RepInfo of the
provenance data. In other words, by representing the
elements of the PDI themselves as Information

Objects, we enable the PDS to use the same
mechanism to preserve user data and its own metadata.

Figure 3: Representation of AIP in

Preservation Engine layer. AIP consists of
Information Objects that contain data and
RepInfo, which is also an AIP.

4.5.2. Preservation Engine Mapping to XAM.

From a high-level perspective, an AIP is naturally
mapped to an XSet. The AIP contains pieces of data
and metadata bundled together under a unique ID.
Recall that the XSet offers a unique ID (XUID) and
may contain pieces of data and metadata stored as its
XSet fields.

Looking at the AIP content, an AIP is constructed
of Information Objects. Within an Information Object,
the content data (an opaque byte stream) is naturally
mapped to an XStream. The RepInfo reference is
mapped to a property of type XSet reference (XUID),
since each RepInfo is represented by a separate AIP
and therefore mapped to a separate XSet.

 The challenge lies in mapping the Information
Object itself. How do we tie together its contained
objects to enable a sound mapping of the AIP inner-
structure while using XAM correctly? The AIP has a
hierarchical and complex inner-structure, while XAM
is oriented towards a flat structure and aims to contain
many XSet fields in a single XSet.

One option is to map each Information Object to an
XSet. In this option, the AIP is mapped to an XSet that
may contain two XSet references – one for the Content
Information and one for the PDI. The PDI XSet, in
turn, contains four XSet references (Provenance,
Fixity, Reference and Context). Although true to the
AIP structure, this mapping enforces the creation of
many sparse XSets and thus does not follow the XAM
spirit. Namely, it does not exploit the advanced
encapsulation capability of XAM while still paying the
overhead of maintaining complex abstractions.

We chose to implement an alternative option in the
PDS. We avoid mapping the Information Objects and
place their contained objects directly under the AIP
XSet as XSet fields. In this manner, the AIP
hierarchical structure is completely flattened. A
naming scheme maintains the grouping of XSet fields
to Information Objects (see Figure 4). This mapping
better exploits the XAM object structure (taking
advantage of the fact that an XSet is a container of
multiple fields of multiple types). Moreover, mapping
an AIP to a single XSet enables transactional
operations on AIPs. Operations on AIPs (e.g., ingest
AIP) are complex and composed of many sub-
operations. Having the AIP as a single transactional
unit guarantees executing each complex operation on
an AIP as a single transaction.

Figure 4: Flat mapping of AIP to XSet. AIP

maps to XSet. Content Data and RepInfo objects
map to XSet fields. Their grouping to Information
Objects (illustrated by the broken lines) is kept by
a naming scheme.

Above, we suggested that each content data

naturally maps to an XStream, assuming that the
content data is an opaque byte stream. This
assumption is correct for the Content Information data.
However, the PDI sub-objects’ data have a complex
inner-structure. Fixity and provenance data consist of a
series of events, whereas context data contains
different pieces of data and references. If each such
data is mapped to a single XStream, we will incur
additional complexity in parsing these XStreams on
each access. Nevertheless, such an implementation
would keep the mapping simple.

An alternative is to map each such data to a group
of XSet fields, parsing the data at the XAM level. This
means each piece of data or reference (e.g., each
provenance event) is mapped to a separate XSet field.
The mapping is more complicated, but enables easy
search and access to these pieces of data and reference.

We also looked into which XAM attribute values
should be assigned to each XSet field, in particular the
use of the ”binding” vs. ”non-binding” qualifier of
XSet fields. Recall that by setting a binding attribute
to a field, XAM implies that any edit/addition/removal
of this field results in the automatic creation of a new
XSet. Hence, the binding qualifier determines the
conditions and/or events under which a new AIP will
be generated.

Since any change to the Content Information will
result in the creation of a new version of the AIP while
keeping the original AIP intact, we map the Content
Information’s content data and RepInfo as binding
objects. The RepInfo of the PDI sub-objects are also
set to binding. For example, a change to the fixity
RepInfo may be an update of the fixity algorithm and
should cause the creation of a new version of the AIP.

On the other hand, the handling of PDI sub-objects’
data is more complex. For example, we believe that
unlike external provenance events (e.g., a change of
ownership) that should cause the creation of a new
AIP, the internal generation of provenance events
should not. Such an internal event may occur during
media migration, where a provenance event is added
by the Preservation Engine to document the migration.
Therefore, if provenance data is mapped to a single
XStream, it should map as non-binding. When
external events are added, the creation of the new XSet
must be handled by the Preservation Engine layer
since it will not be automatically handled by XAM. If
each provenance event is mapped to a separate
XStream, external events map as binding while
internal events map as non-binding.

One benefit of the use of XAM as described above
is in supporting a self-describing, self-contained data
format (SD-SCDF) for AIPs written to a portable
medium. A cluster of AIPs is mapped to a XAM
object (XSet) with properties that include references to
the various AIPs in the cluster. By that, we take
advantage of the XAM export format and propose that
one way to implement SD-SCDF will be to use XML-
binary Optimized Packaging (XOP). The SD-SCDF
will include the references and offsets to the various
AIPs of the cluster, followed by an attachment that
includes a serialization of each AIP. This allows
parallel access to the AIPs if desired. The serialized
AIP will follow the mapping to XAM objects and
include a description of the compact parts of the AIP
(e.g. references to the various RepInfos), followed by
a table of contents attachment to list the offsets to each
of the streams. The table of contents is followed by a
MIME attachment for each one of the streams (e.g.,
content data object stream, reference data stream,
provenance stream, context stream, fixity stream).

Note, the SD-SCDF format has by its own RepInfo
that needs to be preserved, such as the specifications
of XOP, MIME, XAM, etc.

4.5.3. XAM mapping to OSD. There is an ongoing
effort in the OSD working group in SNIA to propose a
mapping of the XAM standard to OSD. To date, the
work that has been done offers a mapping of XAM
objects and their attributes to OSD objects and
attributes. Other issues, such as security, have not yet
been addressed.

The XAM to OSD mapping to be used in the PDS
system is based on the SNIA proposal and is generic;
namely, it has no preservation specific characteristics.
It aims to provide a natural and efficient backend
support to XAM.

5. Discussion and future work

The Preservation DataStores architecture proposed

in this paper is currently under prototype
implementation. The implementation will be tested
and validated within the CASPAR project with large
heterogeneous data sets provided by our CASPAR
partners. This includes earth observation data from the
European Space Agency and cultural data from
UNESCO and artistic data. These testbeds are of
diverse formats including text, binary, imaging, videos
from diverse domains including scientific, cultural and
artistic domains.

One of the difficult issues in preservation systems
is its validation methods. How do you validate today
that your system actually preserves data for a long
time when the future is unpredictable? A primary
objective of the CASPAR project is to design such
validation methods; these methods will also be utilized
for PDS validation.

Another issue for future exploration is the use of
PDS in a federated environment that replicates data
across multiple independent storage systems to
support bit preservation. In addition, the federated
environment maintains indexes to facilitate fast access
to the data. Those indexes can be in databases for
structured data or can be inverted lists type of indexes
for unstructured data. Some open issues in this area
include how to generate a federated index for the data,
how to preserve the index, how to update the search
methods as they evolve in the future, should the index
be co-located with the data or managed separately
from the data, and so forth.

6. Conclusions

There is an increasing need for preservation

systems that can preserve myriad types of information
for tens and hundreds of years. Such systems will be
more robust and have a lower probability of data
corruption or loss if they utilize a storage component
with built-in support for preservation.

In this paper we describe Preservation DataStores, a
novel storage architecture for OAIS-based
preservation aware storage. The architecture is
currently under development as an infrastructure
component of the CASPAR project. It is a stacked
architecture composed of three layers: the preservation
layer, the compound object layer and the stored object
layer. The architecture is based on three open
standards, the OAIS, XAM and OSD, which are linked
via generic mappings.

This architecture transforms the logical concept of
an information object, which is a basic block in
preservation systems, into a physical storage object.
This allows the storage component to “understand”
OAIS structures and functions. This knowledge, when
propagated down to the storage layer, can lead to
optimized and more robust implementations.

A key design point in this architecture is the choice
of open standards. Choosing standards rather than
inventing components is in line with the basic design
principle of preservation systems in general; open
standards are more likely to be robust, system-
independent, last longer, and support interoperability.

Finally, this paper introduces the idea of marrying
the OAIS with the XAM model. As such, this is a
demonstration of a first application of the new and
emerging XAM model.

References

[1] ISO 14721:2003, Blue Book. Issue 1. CCSDS, 650.0-

B-1: Reference Model for an Open Archival,
Information System (OAIS), 2002.

[2] M. Factor, D. Naor, S. Rabinovici-Cohen, L. Ramati, P.
Reshef, and J. Satran. "The Need for Preservation
Aware Storage - A Position Paper". ACM SIGOPS
Operating Systems Review, Special Issue on File and
Storage Systems, Volume 41, Issue 1 (January 2007),
pages 19-23.

[3] CASPAR - Cultural, Artistic and Scientific knowledge
for Preservation, Access and Retrieval. See
http://www.casparpreserves.eu/.

[4] M. Baker, K. Keeton, and S. Martin. “Why traditional
storage systems don’t help us save stuff forever”.
Technical Report 2005-120, HP Laboratories Palo Alto,
June 2005.

[5] M. Baker, M. Shah, D. Rosenthal, M. Roussopoulos, P.
Maniatis, TJ Giuli, and P. Bungale. “A fresh look at the

reliability of long-term digital storage.” In Proc.
European Systems Conference (EuroSys), April 2006.

[6] Reagan W. Moore and Richard Marciano. “Building
preservation environments”. In JCDL ’05: Proceedings
of the 5th ACM/IEEE-CS joint conference on Digital
libraries, pages 424–424, New York, NY, USA, 2005.
ACM Press.

[7] Mark W. Storer, Kevin M. Greenan, and Ethan L.
Miller. “Long-term threats to secure archives”. In
Proceedings of the 2nd International Workshop on
Storage Security and Survivability (StorageSS 2006),
Alexandria, VA, pages 9–16, October 2006.

[8] Reagan W. Moore, Joseph F. JaJa, and Robert
Chadduck. “Mitigating risk of data loss in preservation
environments”. In MSST ’05: 22nd IEEE / 13th NASA
Goddard Conference on Mass Storage Systems and
Technologies (MSST’05), pages 39–48, Washington,
DC, USA, 2005. IEEE Computer Society.

[9] SRB – Storage Resource Broker. See
http://www.sdsc.edu/srb/index.php/Main_Page

[10] iRODS - Intelligent Rule-Oriented Data management
System. See http://irods.sdsc.edu/index.php/Main_Page

[11] Erik Oltmans, Raymond J. van Diessen, Hilde van
Wijngaarden. "Preservation Functionality in a Digital
Archive". Digital Libraries, 2004 ACM/IEEE Joint
Conference on (JCDL'04), 2004, pp. 279-286.

[12] Lorie, R, "A Project on Preservation of Digital Data".
RLG Digi News, 5,3
http://www.rlg.org/preserv/diginews/diginews5-
3.html#feature2

[13] Kiran-Kumar Muniswamy-Reddy, David A. Holland,
Uri Braun, and Margo Seltzer. ”Provenance-aware
storage systems”. In Proceedings of the 2006 USENIX
Annual Technical Conference, June 2006.

[14] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller,
Kaladhar Voruganti, ”POTSHARDS: Secure Long-
Term Storage Without Encryption,” In the Proceedings
of the 2007 USENIX Technical Conference, June 2007.

[15] Andres Rodriguez. “Preserving the Last Copy: Building
a Long-Term Digital Archive, a white paper”. Archivas,
Inc., 2004.

[16] Michael Peterson. “The Coming Archive Crisis, a white
paper”. SNIA Data Management Forum, Nov. 2006.

[17] The National Digital Information Infrastructure and
Preservation Program - The Library of
Congress.http://www.digitalpreservation.gov/.

[18] SNIA - Networking Industry Association, Data
Management Group, XAM (Extensible Access
Method). See http://www.snia-dmf.org/xam/

[19] SNIA - Storage Networking Industry Association.
OSD: Object Based Storage Devices Technical Work
Group.

[20] International Committee for Information Technology
Standards (formerly NCITS), SCSI Object-Based
Storage Device Commands (OSD). Document Number:
ANSI/INCITS 400-2004, technical editor: R.O. Weber,
December 2004.

[21] Michael Factor, Kalman Meth, Dalit Naor, Ohad
Rodeh, and Julian Satran. “Object storage: The future
building block for storage systems - a position paper”.
In Local to Global Data Interoperability - Challenges

and Technologies, Sardinia Italy, pages 119–123, June
2005.

[22] Khalil Amiri, David Petrou, Gregory R. Ganger, and
Garth A. Gibson. “Dynamic Function Placement for
Data-intensive Cluster Computing”. In Proc. of 2000
USENIX Annual Technical Conference, San Diego,
June 2000.

[23] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and
David Nagle, “Active Disks for Large-Scale Data
Processing”. In IEEE Computer, June 2001.

