IBM research

The challenge: August 1998

http://domino.research.ibm.com/Comm/wwwr_ponder.nsf/challenges/August1998.html

1.We can prove : $\angle MON^{\uparrow}, \angle OMN^{\downarrow}, MN^{\uparrow}$, suppose $OM \leq ON$.(Left Figure)

2.Suppose that $\angle A \leq \angle B \leq \angle C$, Case 1: $DE \geq DB$, (Middle Figure) $\angle a1 \leq \angle a2 \leq \angle a3$, so $BE \leq CF \leq AD$ We can also get $\angle a2 \geq \angle a3$ by the relationship of $\angle OMN$ and MN in Step1.

So $\angle a2 = \angle a3, AB = AC, AD = CF$, $\triangle ADF \triangleq \triangle BFE$,

$$\angle a1 = \angle a2 = \angle a3 = 60^{\circ}$$

Case 2: $DE \le DB$ (Right Figure), we also get $BE \le CF \le AD$

We can get $\angle b1 \leq \angle b2 \leq \angle b3$ by the relationship of $\angle MON$ and MN in Step1. Then $\angle c1 \leq \angle c2 \leq \angle c3$. We can also get $\angle c2 \geq \angle c1 \geq \angle c3$ by the relationship of $\angle OMN$ and MN in Step1. So $\angle c1 = \angle c2 = \angle c3 \implies \angle b1 = \angle b2 = \angle b3$, Then $\angle a1 = \angle a2 = \angle a3 = 60^{\circ}$