ML concepts and pitfalls

Eitan Farchi

IBM Haifa Research Laboratory

2017

74



Machine learning concepts
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Learning - a simple setting

Let X be a domain. An adversary chooses a labeling function

f: X —{0,1} and a distribution D over X. Simultaneously, the
learner chooses m and is given m examples

(x1, f(x1)), ---(Xm, f(xm)). xi € X are m samples drawn
independently using D. The learner deduce a labeling function
h: X — {0,1} and wants to minimize Prp(h(x) # f(x)).
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Generalization is a must

The adversary picks a continuous distribution D over an infinite
domain X, i.e., the probability of choosing a set of finite number
of points from X is zero. The learner specifies m and sets

h(x) = f(x) if x=x;,i =1...m and h(x) = 0 otherwise. The
adversary then chooses f(x) =1 for x # x;,i = 1,...m. We get
that Prp(h(x) = f(x)) = 0. Thus, probability of making a mistake
is 11,

1The adversary could have chosen any labeling function, f, and any
distribution, D. such that Prp(f(x) = 1) = 3. As a result, we would get that
Prp(h(x) = f(x)) = %
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Learning a threshold on [a,b] C R

v

An ERM strategy for learning a threshold classifier

The intermediate value theorem

v

v

We need points close to the threshold

v

The sample size should be big enough to ensure that

v

Recapping with an updated definition of learnability
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An ERM classifier for a threshold function

X = [a, b] C R. Prior knowledge indicates that f € threshold(X)
where threshold(X) = {h; : X — {0,1} : he(x) =0if x < tand 1
otherwise }.

We focus on the performance of an ERM classifier that after
obtaining m points x; € [a, b],i = 1,...m, chooses an

h; € threshold(X) such that > ™, 1p(xy2f(x) IS Zero.
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Intermidate value theorem

Given a continuous function f : [a, b] — R, and given that
c € f([a, b]), there exist a d € [a, b] such that f(d) = c.

Figure 1: Intermidate Value
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We need to ensure that sample points hit close to f

Let 1 > &> 0. As f € threshold([a, b]), f = h; for some t € [a, b].
It is not possible for both Pr([a, t]]) and Pr([t, b]) to be less than
¢ as that will mean that Pr([a, b]) < 1. B.l.g., Pr([a, t]) > e.
Assume the distribution is continuous?, then by the intermediate
value theorem we have that there exist an r € [a, t] such that
Pr([r,t] = 5. We want at least one sample point in [r, t].
Similarly we have a point s € [t, b] such that Pr([t,s]) < 5. Again
we want a point in the sample to hit [¢,s]. If that happens the
ERM will choose hg with g € [r,s]. As a result

Pr(hg(x) # f(x)) < £ will hold.

%j.e., that it has a continuous density function
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Enough samples will ensure that we hit close to f

The probability of not hitting [r, t] in the sampling process m
times is (1 — 5)™ < e 2™ which we want to be less than

0<d<1. Wegetthate_%m<(5orthatmz#”(5)
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Enough samples will ensure that we hit close to f

The probability of not hitting both [r, t] and [t, s] is bounded by
the union of these probabilities, i.e., 2(1 — 5)" that should be less
than § which gives us our final requirement on m.
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Learning - a simple setting - updated

Let X be a domain. An adversary chooses a labeling function

f: X — {0,1} and a distribution D over X. Fix a hypothesis set
of functions H, such that h € H is a function from X to {0,1}.
Assume f € H. We say that f is learnable if for any ¢,6 € (0,1),
the learner may choose a sample of size of at least m(e, d) such
that with probability of at least 1 — § on the sample, the
probability of error of the h the learner learned is

Prp(h(x) # f(x)) < e. In other words the "payment” to the
adversary will not exceed € almost certainly regardless of the
choice of labeling function from H and distribution function.

We have proved that the class of threshold functions on [a, b] C R
is learnable.
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On the impossibility of learning - no free lunch theorem

» Learning the set of all functions for a finite domain is not
possible - the setting

> Learning the set of all functions for a finite domain is not
possible - the proof

» An infinite domain example
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Learning the set of all functions - the setting

We are given a finite domain X and a model H of all functions
from X to {0,1}, i.e., H={h: X — {0,1}}.

The learner requires a sample size m < @ The adversary picks a
uniform distribution D over X, chooses f randomly on H and
provides m samples S = ((x1, f(x1)),- -, (Xm, f(xm))) i.i.d

sampled. Note that at least \)2<7| points are not sampled.
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Learning the set of all functions is not possible - the proof
Given a sample S, and a choice made by the learning algorithm
h € H. The probability of making a mistake is at least the
probability of making a mistake on a point not in the sample, i.e.,
at least on % points from X. A point not in the sample is chosen
in probability at least %

Figure 2: @ of the points in X are not sampled
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Learning the set of all functions is not possible - the proof

Next the probability of making a mistake once the learner fixed her
learned function h € H and the adversary chooses a point not in
the sample is % as the adversary chooses a function in H at
random. Thus, the probability of an error is at least %.

As we averaged over H there exists a function h € H for which the
probability of error is at least %3

1

30Otherwise, all choices of functions from H will give an error less than 2
1

and therefore the average will not be more than ;.
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Not learning an infinite set

Let X =N. Let H={h: N — {0,1}| h(x) # 0 on a finite number
of points}. Then for any finite subset A C N, all functions on A
can be obtain by projecting H to A. Applying the previous
argument yields that the adversary can make the learner error with
probability at least a % by restricting the probability to A. As this
is done for any finite A, the adversary can cause the learner to
error with probability at least % no matter how big the required

sample by the learner is.
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The VC dimension

» Shattering sets
» The VC dimension

» Revisiting the no learning examples "through the eyes’ of the
VC dimension
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Shattered Sets

Given a domain X and a model H, a set A C X is shattered by H
if for any labeling of A, /: A — {0,1}, there exists a function

f € H such that Vx € A, f(x) = I(x).

Below X = R? and H are all of the half spaces in R?.

4 points

3 points shattered "
impossible

Figure 3: Shattered and non shattered sets
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VC dimension

Given a domain X and a model H, the VC dimension of H is the
maximal number d such that 3A C X such that |A| = d and A can
be shattered by H if such number exists and oo otherwise.

In our running example below we learned that the VC dimension of
half spaces in R? is 3.

4 points

3 points shattered N
impossible

Figure 4: VC dimension of half spaces in
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Revisiting the no learning examples "through the eyes” of
the VC dimension

» For a fine set X and a model H of all labeling functions over
X, the VC dimension is | X]|

» For N and a model H of all finite 1 labeling functions, the VC
dimension is oo

In the first case above it was hard and the second not possible to
learn. Thus, the VC dimension captures how hard learning is.
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Learning, search problems and convexity

» Learning algorithms implements a search for h € H that
minimizes some lose function resulting in a search problem

» An example of a search problem
» The challenge of local minima
» Convex sets

» Convex functions

» For a convex function every local minima is a global one
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Learning algorithms minimize some loss function

» Typically we want to have a "simple” explanation that
minimizes the error on the sample space

> For example, if the real explanation is half a space we want to
avoid explaining the data using a polygon (called overfitting,
more on this latter)



An example of a search problem

» Given a function f : R — R, find it's root, i.e., x € R such
that f(x) = 0.

> lterate on the following search process x, = x,—1 — %

(called Newton's method)
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The problem of Local minima

» Given a function f : R" — R, u € R" is a local minima if
there exists r € R, r > 0 such that Vx € R" with
[|x —ul| < r, f(x) > f(u).

> A search process may converge to a local minima but our
objective is the global minimum of the lose function

global maximum

local maximum

2 - }\ —
0 >/

-2 _

local minimum

global minimum

24 /74



Convex sets and convex functions

» AC R"is convex if Vx,y € A and any
0<a<l,ax+(1—a)y€cA

» For any set B C R", there is a minimal set cov(B) that
contains B and is convex. It is the intersection of all convex
sets that contains B which is non empty as R" is convex and
contains B.

» A convex function f : R" — R is convex if
flax+ (1 —a)y) < af(x)+ (1 — a)f(y) for x,y € R" and
0<a<l.

» For f: R" — R, if f is convex the set y € R such that
y > f(x) for some x € R" is convex
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Local minima are global for convex functions

Assume u is a local minima. Then we have r > 0 such that

f(u) < f(x) for ||x — u|| < r. Take a point v € R", and chose an a
so that u + a(v — u) is of distance less then r from u*. We have
that f(u) < f(u+ a(v —u)) < (1 —a)f(u)+ af(v). Thus f(v) is
greater or equal f(u)

*Formally prove using the intermediate theorem tat such a a exists.
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Search algorithms

Next we'll cover some well known search problems over the loss
function utilized in many learning techniques (e.g., regression, deep
learning, etc.)

» Gradient Descent

» Newton's method revisited
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Gradient Descent

» For clarity we'll present GD for two dimensions. Given a loss
function f : R> — R, the gradient of f, for € R? is given by
Vi) = (55 55)

» Gradient decent is then defined by 0y = 0x_1 — rV£(60) which
updates 6 at the direction of V(#) at the rate of r

> ris a hyper parameter. Linear search is a technique for
searching for the best r

» Newton's method "chooses the rate” but at the cost of
inversing a potentially big matrix (in the number of features,
the Hessian)®

®More about that shortly.
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Garient decent motivation

The gradient is chosen because it is perpendicular to a contour of
equal hight on f. In details, given a contour 6 : [0,1] — R?,

0(t) = (01(t), 02(t)) such that f(01(t),02(t)) = c then

o fgf(t)) = 5—9’101(1“) + 8%’;0/2(1“) = 0 and therefore Vf is
perpendicular to 0(t)
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Validation /testing that we learned correctly

» ML based system testing
» Single ML component testing

» Probability concentration
» Boosting TBC
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ML based system testing

» A software system is built by recursive decomposition of the
system to components
» Each component provide interfaces and has well defined inputs
and outputs with a known expected behavior

> In contrast a ML based system is compost of two types of
components - ML components and traditional software
components
» A ML component input is typically of the same type of its
training set its output is a random variable
» It is implicitly assumed that the input is applied to the system
using the same distribution that was used in the training phase
and actually this is PART OF WHAT WE NEED TO TEST

» When testing a system interface at any level of abstraction
one needs to determine if the input or part of it is translated
to a ML training set format and if it does how that is done

> In the next slides we will focus on the simplest scenario in
which the interface being tested is a ML interface and the
inputs are of the same type as the ML algorithm training set
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What if we knew the distribution? and by the way we can
estimate it!

» Loss function - Decision Theory, Hypothesis test, Game
Theory, learning and a word on their respective optimization
problems

» Had | known some probabilities what would be the best
classifier?

» OK, so why isn't ML reduced to classical estimation problems
of probability distributions?
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Loss function

» Recalling that we are given xj ... x, chosen at random by an
adversary from X. In addition, the adversary choses
f: X — Y. Our purpose is to come up with f; : X = Y that
"well represents” f

» Given an x € X our loss function is a L(f(x), fi(x))
(sometimes referred to as a loss function)

» Think of the loss function as the payment the learner pays to
the adversary
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Loss function - an example

> Learning problem - identify if a test failure indicates a fault in
the test/environment, T, or a fault in the program under test,
P. Thus, Y ={T,P}

» Developers are more expensive than testers for concreteness
say they are twice as expensive. Thus, we could have the
following loss function, L(P, T) =1, L(T,P) =2 and
otherwise 0
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Loss function - Decision Theory, Hypothesis test, Game
Theory, learning and a word on their respective
optimization problems |

» Learning - the adversary may chose any distribution and any
function. The learned determine the minimal size of the
training set n, so that the average loss E(L(f(x), fi(x)), given
the distribution chosen by the adversary is bounded

» Game Theory. Game in extensive form (not a matrix game).
Adversary choses a distribution and a function f : X — Y.
Learned, without knowing the choices of the adversary, choses
the size of the training set, n. Nature choses n i.i.d samples
(x1,¥1)s- - (Xn, ¥n)- The learner choses f;. Trainer pays the
adversary E(L(f(x),fi(x)). We would like to find the Nash
equilibrium of this game®

®Haven't seen this type of work yet
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Loss function - Decision Theory, Hypothesis test, Game
Theory, learning and a word on their respective
optimization problems Il

» Decision theory and hypotheses testing. Assume some
knowledge on the probability distribution capture by a family
of distributions and chose a function to minimize the loss
under that assumption

> In hypothesis testing there are just two alternative distributions
you need to chose from
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Had | known some probabilities what would be the best
classifier?

» Slightly changing the framework. We are given a pair of
domain and its possible classification (X, Y). The adversary
choses some distribution P over (X, Y)

» For a discrete probability P, P(y|x) is the probability that x is
labeled y. We thus have Vx € X, > p(y[x) =1

» We'll assume that Y is finite

» The learner choses f; : X — Y. Consider the indicator loss
function L(yi1,y2) = 1 iff y; # y» and 0 otherwise

» We get that the average loss which we want to minimize is
Ep(L(y, fi(x))
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Had | known some probabilities what would be the best
classifier? Il

v

We'll calculate for a discrete variable’

EP(L(y7 ﬁ(X)) = Z(x,y) L(ya f/(X))P(X,Y) =

ZXGX Zy;éf,(x) P(X7y)

For any x € X denote by ymax(x) a y € Y such that
P(X, Ymax) > P(x,y) forany y € Y

Had we known P we could set fi(x) = ymax(x) and we will get
that ZXEX Ey;éf,(x) P(X>y) > ZXGX Zy;éymax(x) P(X’y)

v

v

v

"For a continuous variable change the sum to and appropriate integral
everywhere
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OK, so why isn't ML reduced to classical estimation
problems of probability distributions?

» Typical X = Z9. We will need to estimate P for each x € X
which is exponential in d

» Back to combinatorial design of statistical experiments...
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How to estimate a parameter of a family of distributions
and why?

> We have just learned that estimating a probability may be an
important tool in designing learning techniques

» Maximum likelihood estimation - the technique
» Maximum likelihood estimation - some examples

> Using maximum likelihood estimation to derive naive Bayes
classifiers
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Maximum likelihood estimation - the technique

We assume (capture our knowledge about the learning problem)
that our training set D = (xq,...,x,),X; € R are sampled i.i.d
from some probability distribution P(6),0 € ©. 6 is unknown and
we are trying to estimate it. A natural approach is to solve

Omie = argmaxpco P(D|0) choosing a parameter that is most likely
to give the training set D.

As the training set was sampled from an i.i.d we have that

Omie = argmaxpco P(D|0) = argmaxpco [ [ P(xi|0)
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MLE example

We assume that the training set, D, is obtained from a normal
(x=6)>
L__e 2.2 where the average
\ﬂ27ra2)

@ is the unknown parameter. We thus get that

p(DI0) = p(x1;- - xalf) = TT7 pCxil0) = TTT —pp—e

Taking the derivate wrt to # to find the maximum. The log
function is monotonic increasing so maximizing the log of the
above function will yield the same maximum.

log(D|) = —2%log(2mo?) — 2%2 S 1(x; — 0)2. Taking the derivate
wrt to 6 and equating to zero yields 8 = %fo,-.

probability with density function

(x—0)?
202
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MLE example - TBC
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Bayesian networks, plausible inference and learning

v

An approach to learning and how it ties to classical statistic
inference

v

Bayesian network definition and example

v

Conditional independence in Bayesian networks

v

d-separation and hidden Markov models

v

Using the model - query a Bayesian network
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Bayesian network definition and example |
Consider the Bayesian network below. The network captures the
assumption that a node is only conditional dependent on its
parents. Concretely this is expressed in the following calculation.
By the low of probabilities we have
P(H,A,E,G) = P(H)P(A|H)P(E|A, H)P(G|HEA). Applying the
dependence assumptions of the network this reduces to
= P(H)P(A|H)P(E|H)P(G|AE). In words doing well in the exam
is only dependent on doing the homework well, same for the final
assignment. Being a good researcher is dependent on doing the
final assignment well and doing well in the exam.
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Bayesian network definition and example |l
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Conditional independence |

> It is desirable to determine the conditional independence of
variables given some observed events. This simplifies the
estimation of other events (that did not occur yet)

» One easy observation is that a variable is conditionally
independent of its non-descendants given its parents. A
detailed example of this is given in the next slide.
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Conditional dependency I
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Conditional dependency Il
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Conditional independence V

Once we have deduced that some variables are independence we
want to test for arrows directions wrt variables assumed to be
dependent. Below given that B is independent of C we determine
the expected conditional independence on A given different
possible directions of the arrows.

—r
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d-seperation
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Hidden Markov model
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Naive Byes
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Quality of ML and data intensive solutions
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Outline

» Quality of ML and data intensive solutions

» White box
» Black box
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Quality of ML and data intensive solutions

» Is ML quality determined by software quality?

» Quality of software construction is a necessary but not
sufficient condition to the quality of the ML /data solutions

> Instead its determined by

» Marriage of clear quantitative business goals with data that
contains the right information to realize them

» Correct abstraction of the data that does not lose information

» Training data is representative of the real life data and has the
right size to guarantee successful learning

» Correct choice of ML technique and hyper parameters
maximizes the chance of high quality learning

» The workshop focuses on the above items and teaches

» Pitfalls to learning
» How to avoid them
» Best practices and techniques to insure high quality of learning

56
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Black box testing challenges |

» Below is the architecture of a ML based system. The system
is decomposed into:

>

| 4

A Machine learning component (ML). The ML component
used the data (D) as its training set

The data D is pre-processed and sampled using a
transformation function, Tran

The system has two software components (SF) that interact
with the ML component and each other to obtain the system
result

The ML training objective is defined at the ML component
level (LR)

The system requirements, SR, are defined as a black box

SR
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Black box testing challenges Il

» The way the system is constructed and the learning
requirements, LR, are defined my not realize the SR. In
addition, the SR may not be quantifiable

» The data transformation, tran, may missed or abstracted
factors. The information needed to learn LR or SR is not
present in the data.

» The system is decomposed in interacts in a wrong way
resulting in not meeting the system requirement, SR.
Interface to the ML component tis not well defined

» Overtime data changes rendering the ML component useless

SR
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ML /data black box quality

» The marriage of data and business requirements is crucial to
quality
» It should be monitored over time to identify drifts (e.g., in
data distribution or probability of accurate classification)
» Drift may occur in the data, the business requirements or
both. The following best practices apply:
» Develop an independent of the learning model statistic test to
determine that the data is drifting
» Develop a traceability capability that determines the source of
the data and identify that the number or type or distribution
of the data sources changed
» Determine when loss function of learning algorithm changes
» Identify when the performance of some independent business
value centered metric is degrading

BLACK BOX TESTING
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ML /data white box quality

» ML loss function and feature vector composing the training
set should correctly reflect the business objectives
» Data is abstracted and manipulated to obtain the feature
vector composing the training set
» Abstraction must not lose key features that determine the
result of the learning function, or abstract their values in the
wrong way
» Data is representative of the real life data. The generative
process that created the data reasonably represents the way
the data will be obtained in production time and does not
introduce biases

» The data is big enough to successfully apply the ML
technique we decided to apply

» Choice of ML technique and hyper parameters is the right one
and maximizes the chance of high quality learning
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White Box pitfalls and antidote
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List statistical assumptions and find ways to check them

» ML approaches make statistical assumptions.
» As an example naive Bayes assumes conditional independence,
i.e., that p(x|y) = p((xt, ..., xa)ly) = [1 p(xily) where x; are
the features and y is a class to be classified. In addition, the
probability p(x;|y) may be assumed to be normal or Bernoulli

> Apply statistical reasoning to check the assumption

» Caution - you may still proceed with the approach even if the
statistical assumptions are not completely met
» Naive Bayes may be used although it is observed that the
features are not independent as it simplifies the task of
estimating n features space distribution to an estimation of
one dimension feature space



Did you generalize?

v

Separate the test data

v

Consider the hypothesis set compared to the data
» Is it too strong and are you going to overfit?

v

Prefer simpler models that preform well

» Use VC dimension to determine complexity of the model
» Other heuristics to determine complexity? Number of
dimensions? Number of model parameters? TBC

» For a given hypothesis, prefer a simpler classifier with the
same Experimental Error, ERM, on the training set
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Learning objective, business objective

> learning objective or loss function drives the optimization
» it should represent the business goals as much as possible
» sometimes this is not possible and only an approximation is
possible leading to the need for black box testing representing

the business goals in addition to the ML performance against
the test set that can be labeled as white box testing

» simple example of choosing the objective or loss function
carefully. With spam classification the mail could be spam but
classified as non spam. That is not too bad, you look at the
mail and determine it’s spam. On the other hand the mail can
be non spam and a mail from your manager and you ignore it
because its labeled as spam - that is bad. The loss function
should account for that

» objective function should be carefully design to represent the
business objective (but also to simplify the optimization, e.g.,
by preferring concave loss functions when possible
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Embedding knowledge is a must

» You must embed knowledge to achieve learning. - no free

lunch
» This is done in two possible ways
» Define a class of possible hypothesis to learn from
» Define a family of distribution the data is obtained from
> A trade off is to be achieved
» Given a trend observed for a segment of the entire space
» The trend may be random or part of the function to be learned
behavior
» Two mistakes are possible (sometimes referred to as overfitting
and underfitting)
> Representing a random "trend” as part of the learned
function. If the hypothesis class is too complex we have a
higher chance of that error occurring resulting in over fitting
> Not representing or ignoring a real trend of the function. If
the hypothesis class is not complex enough we will not be able
to represent some real trends e.g., if the trend is parabolic and
the hypothesis class is linear
» Bottom line - we need to capture our knowledge in a "just

right” hypothesis - not too complex and not too simple
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Why overfitting is always possible

Consider our training set (x1,y1), ... (Xn, ¥n). It is always possible
to define a polynomial that fits the data perfectly. For example,
H#;(X—Xj)

j£i Xi X

Then f(x) =],—; , P(i,x)yi is a polynomial with p(x;) = y;.8

note that p(i,x) = is 1 if x = x; and O for x;,j # i.

8See discussion on VC dimension latter at slide number 17. Try to answer
the following questions in that context.

> What is the degree of f(x)?
> What is the VC dimensions of all polynomial up to the degree of f(x)?

» OK - what does that tell me about learning?
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Over fitting and under fitting resulting from too much or
not enough knowledge. Can be combated by TBC

» Cross validation e.g., in order to choose the size of a tree
» Regularization in order to choose a simpler classifier

» Significance test to check if to classifiers are different, e.g.,
chi- test
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Cross validation |

» We are given n models My, ... M,°. Initially one may fit M;
to the training set (x1,y1), ... (X, yx) and pick up the best

model, M;, which will result in overfit if n is big enough'®.

> In cross validation we choose between % and % of the training

set and keep it as the test set. We next train on the rest of
the training set and check our performance on the test set.

For concreteness, think about all polynomials of degree 1,...n.
O Consider the following two questions:

1. How big should n be to result in an overfit?
2. Can this approach be modified in a way other than cross validation
to work well?
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Cross validation |l

Some general observations on cross validation. See wikipedia for
variation on the theme.

» The performance on the training set is a statistic that
correspond to the performance on the real data

» If you choose the training set again and follow the same
learning process you will get slightly different performance
» The performance statistic is slightly biased (its average is

slightly different than the real average) due to the test set
being a fraction of the training set

» Confidence interval for the performance on the test set is
considered a hard problem
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Cross validation - feature selection |

> If the number of features, n, is much bigger than the number
of training set, m, even if you use a linear model to classify,
its VC dimension will be O(n), which is much bigger than m,
resulting in potential overfit

» This may be augmented by the intuition that not all features
are releavent...

» We thus need to choose a subset of the features
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Cross validation - feature selection |

Denote the set of features as F = {F1,... F,}. If nis not too big
you could preform chose a subset of F and preform cross validation
on it. When n is to big the following can be done.

1. Set FF =0
2. Fori=1,....nifi¢ F', perform cross validation on
F’ U{i} /
3. Update F to the best model obtained in the previous stage

Another option to order the features based on some information
gain criterion.
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Chose a representation that let you easily capture your
knowledge and update it as needed - tbc with examples -

» Feature similarity - instance model ?
» Conditional probabilities - graph representation

» Precondition - if then models
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Over fitting and under fitting resulting from too much or
not enough knowledge. Canberra combated by TBC

» cross validation e.g., in order to choose the size of a tree
» regularization in order to choose a simpler classifier

» significance test to check if to classifiers are different, e.g.,
chi- test
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High dimension pitfalls

» Assume we have 100 binary features
» Classification is determined by the first two features
> rest of the features are random
> using say the hamming distance and k nearest to classify we
will be fooled to determine close vectors that are not close —
on average vectors will be close TBC make statement precise
» use of information gain to exclude features that are noise wrt
the classification
» - sometimes the class you wish to learn focuses on a lower
dimension sub space — utilize this implicitly or through explicit
dimension reduction algorithm
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