SAT, CSP, and proofs

Ofer Strichman
Technion, Haifa

Tutorial HVC'13

The grand plan for today

Intro: the role of SAT, CSP and proofs in verification

SAT — how it works, and how it produces proofs
CSP - how it works, and how it produces proofs

Making proofs smaller

Why SAT ?

= Applications in verification:
o Formal verification:

= (Bounded) model checking for hardware [1999 --]
0 Over a dozen commerncial tools

= (Bounded) model checking for software [2001 --]
o CBMC, SAT-ABS, CLLVM, ...

= Satisfiability Modulo Theories (SMT) [2003 --]

0 e.g. MS — Z3 used in dozens of software analysis tools
(SymDiff, VCC, Havoc, Spec#, ...)

Why SAT ?

= Applications in verification:

o Simulation:
= Test generation for hardware
= Test generation for software via SMT
o MS-SAGE, KLEE, ...

Why CSP (Constraints Satisfaction Problem) ?

= Applications in verification:
o Formal verification: 7?7
o Simulation: test generation for hardware

Why CSP (Constraints Satisfaction Problem) ?

= A Higher-level modeling language

o Can lead to an order of magniture smaller model size.
= Does not matter much in practice

s Certain constraints can be solved faster than in SAT
o Some (e.g. “all-different”) can be solved directly in P

SAT and CSP

= SAT is crawling towards CSP

o Various SAT solvers now support high-level constraints
over Boolean variables:

= Cripto-minisat supports XOR constraints
= MiniSat+ supports cardinality constraints >_ wiz; < c

= CSP is crawling towards SAT:

o Some solvers support reduction to SAT
o Solution strategy now mimics SAT

Why proofs ?

= Traditionally the focus was on finding models
o No information was given in case of UNSAT

= As of Chaff (2003 --) solvers produce proofs
a Originally just to validate result

Why proofs ?

Several killer-applications (SAT):
= Validate UNSAT results

= From the proof we can extract an unsat core
o Used in formal verification [AM03, KKB09, BKOSSBO07...]

= Uses of the proof itself:
o Interpolation-based model checking [MO3].

s Can we foresee usaqe for proofs in CSP ?

The grand plan for today

Intro: the role of SAT, CSP and proofs in verification

SAT — how it works, and how it produces proofs

CSP - how it works, and how it produces proofs

Making proofs smaller

10

CNF-SAT

= Conjunctive Normal Form: Conjunction of disjunction of
literals. Example:
(=X V 2Xo) A (Xo V X4 V —Xq) A ...

= Polynomial transformation to CNF due to Tseitin (1970)
o Requires adding auxiliary variables.

11

Main steps — SAT

SAT

= “Decide”
o Variable, value

= “Boolean Constraints Propagation
(BCP)”
o infer implied assignments

= “Analyze conflict”
o applies learning
o computes backtracking level

12

About that “constraints propagation”

BCP: x;=1 = x,=0 = x,=1 =...

13

SA’]

I essentials

|

- SAT

|

BCP J 1 CONFLICT

{ DECIDE J full
assignment
partial
assignment
%B‘ACKTR‘ACK]*
dl >0

no
conflict (W conflict fANALYZE—

]— UNSAT

14

Implication graphs and learning

Current truth assignment: {x,=0@1 ,x,,=0@3, x,,=0@3, x,,=1@2, x,;=1@2)

Current decision assignment: {x,=1@6}

W; = (—X; VX,)

@, = (—X; VX3 VXg)
W; = (=X, V=3 VX,)
Wy = (=X, VX5 VX5)
ws = (—x, VX5 VXy)
W = (—x5 vV = Xg)

W, = (X; VX7V —X}5)
wg = (xX;V Xg)

Wy = (—X, vV —Xg V —1X3)

X,,=0@3

conflict

We learn the conflict clause w,,: (—x; Vx9 V' X;; V' X50)

and backtrack to the highest (deepest) dec. level 1n this clause (6). 15

Implication graph, tlipped assignment

@) = (=X, VXp)

@, = (=X VX3 V)
@3 = (=X, V —X3 VXy)
@y = (=X VX5 VX))

@; = (X; VX7V —X)y) x;,;=0@3

—~—

Due to the
Wy = (—X, V —Xg V = X;3) conflict clause xX;=1@2

g = (X;V Xg)

@y - (7x; Vxg VXg; VXxg0)

We learn the conflict clause w,; : (—x;3 Vxg VX9 VX5V —Xp5)

and backtrack to the highest (deepest) dec. level in this clause (3). 16

Non-chronological backtracking

3 Decision
level

Which assignments caused
the conflicts ?
Xg= 0@1)

X10= 0@3 | These assignments
X;1=0@3 | Are sufficient for
X;o= 1@2 | Causing a conflict.

Backtrack to decision level 3

17

Learning and resolution

= Learning of a clause = inference by resolution.
o To be explained

= This is the key for producing a machine-checkable proof

18

Resolution

= ...By example:

(x1 V z2) (mz1 Va3 Vzs)

(x> V23V 24)
= Formally:

(a1 V...VanVp) (b1 V... Vbm V(=f)) (Binary Resolution)

(a1 V...Vapn Vb1 V...Vbn)

19

Resolution proof

Aproof: (I13)ANCI25ANETAHAEL-4) F 3S)

AN N,
(135) (-1)

\/

(35)

20

Resolution proof = Hyper resolution proot

Aproof: (I13)ANCI25ANETAHAEL-4) F 3S)

N

(35)

21

Conflict clauses and resolution

= Consider the following example:

1 = (ﬁ.’l&; Voaxre WV .‘1‘5)

co = (—x4Vx10V T6)
ca = (—x5V xgV x7)
cg = (~wgV 7

= Conflict clause: c.: (@, v~z v 240)

= We show that C, IS inferred by resolution from c,,...,c

4

22

Conflict clauses and resolution

= Conflict clause: cg: (z,V —24 V 240)

c1 = (x4 VxoVaxs)

co = (—x4Vx10V T6)
ca = (—x5V 26V 27)
ca = (~xeVx7)

= BCP order: z,,x5,24,2-
o T1 =Res(cy,C3,X7) = (—X5 V —Xg)
o T2=Res(T1,C,, Xg) = (—X4 V X5V Xip)
o T3 =Res(T2,cq,X5) = (X5 VX4 V Xq0)

S
(3 S
r | ™ 2
J Ay,
)
()

1l

vy S

N/
AN

‘ The Resolution-Graph

(Hyper) Resolution Graph

o, w1 Can be
inferred via
o resolution from
2 W1ee W
K
conflict (O}
Wy
Wy Q%
0
@ K o
6 008

conflict

24

I'he resolution graph

What is it good for ?
Example: for computing an Unsatisfiable core

Involved
Clauses

Empty

......... NN \\/:. Clause

o0)).
':: Qf\;"””"- / / O Original Clauses
O/ . Learned Clauses

[Picture Borrowed from Zhang, Malik SAT’03]

25

The grand plan for today

Intro: the role of SAT, CSP and proofs in verification
SAT — how it works, and how it produces proofs

CSP - how it works, and how it produces proofs

Making proofs smaller

26

Main steps — SAT and CSP*

SAT CSP

= “Decide” = Same
o Variable, value

= “Boolean Constraints = “Beelean Constraints
Propagation (BCP)” Propagation (CP)”
a infer implied assignments o same

= “Analyze conflict” = Same

o applies learning
o computes backtracking level

*As implemented in PCS / Michael Veksler

27

About that “constraints propagation”

Given x,, X, , X5 € [1..3], AlIDifferent(x, , X, , X3)

CP:x,=1=X%,,X;€[2..3]

28

What about CSP proofs ¢

= SAT solvers generate proofs:
o From initial clauses to ().

o Inference is via the binary-resolution rule.

= Unlike SAT solvers, CSPs:

a have non-Boolean domains, and
o nhon-clausal constraints.

= Can this gap be bridged?
o The following is based on [SV10]

29

Signed CNF

... by examples:

e A positive signed literal: a € {1,2,3}.

e A negative signed literal: a € {1,2,4}.

o A signed clause is a disjunction of signed literals. e.g.,

(a € {1,5}Vbe{4})

30

Signed resolution

= A binary-resolution rule for signed-CNF:
(Literals, Vo € A) (x € BV Literalss)

(Literals; Vx € AN BV Literalss)

= Signed-clauses v/

= What about other constraints ?
e.g. #, <, allDifferent(vy, ..., v)

should we just convert CSP to signed CNF?

(sRes(x))

31

Signed resolution

= Q: should we just convert CSP to signed CNF?

= A: No, because it is generally inefficient:
o e.g., X #Y requires:

(ze{l}vye{IHhA(ze{2lvye 2D A...

32

Towards a solution...

= Solution: introduce clauses /azily.

= Consider a general constraint ¢, such that:

o Inthe contextof [y Al A ..o AL
o propagation of ¢ implies | :

(I, Al A AL AC) — |

33

Towards a solution...
(I Al A AL AC) — |

Find an e such that:

2 eisnottoostrong:c— e

o e is strong enough: (I, AL A L. AT AE) — |

34

The structure of a CSP proot

e1, . e3 — explanation clauses.

35

Explanation rules

For every constraint there is an explanation clause:

(constraint)
(explanation clause)

((rule name))

36

Explanation rules — example 1

@ Constraint: x # y F
_TFY

(Ne(m))

re{m}Vvye{m}

m = the value that trigerred the rule

Explanation rules — example 1

Propagation:
@ context: 1 : (x=1), h: (y € [1..100]).
@ constraint: ¢ : x # y.
@ implies: /: (y € [2..100]).

e: (ze{l}vye{l) // Ne(1)

.. indeed:

N

@ (hAbhNe)— 1

»

38

Explanation rules — example 2

@ Constraint: x <y

X<y

(x € (—oo,m|Vy € [m+1,0))

Instantiate m with max(domain(y))

(LE(m))

39

Explanation rules — example 2

Propagation:

@ context: : (x<[1..3]), h: (y €]0..2])

@ constraint: ¢: x < y.
@ implies: /: x € [1..2]

Explanation:
@ e: (xe(—o0,2]Vy€[3,x)).
...Indeed:.
LE(2)

@ C—~¢€
Q (/1/\/2/\6)—1*/

/] =LE(2)

40

Each constraint has its rule ...

Constraint Name Inference rule

oy () T

x<y LE(m) (x € (—o0, m])fvyE [m+1,00))

a=b Eq(D) (ag{gjll:ED)

a<b+c LE (m,n) | e (_x,m+n]vba§nl:-tlc,:x)\/ce [0+ 1,))
b (E’S%b./c,uc) (a€[lp+lc,up+ "j]:\;f’;;lb"ub] Ve glleucl)
AlIDiff(vy,...,v) | AD(D,V) Al(li)/i:z:l;'éb‘;k)

41

So this is how the proof looks like...

e1. &, e3 — explanation clauses.

42

The grand plan for today

Intro: the role of SAT, CSP and proofs in verification
SAT — how it works, and how it produces proofs
CSP - how it works, and how it produces proofs

Making proofs smaller

43

Minimizing the core

= The proof is not unique.
o Different proofs / different cores.

= Can we find a minimum / minimal / smaller cores/proofs?

44

Minimizing the core

= Core compression
o Smaller core [ZMO3, ...]
o Minimal core [DHNQOBG, ...]
o Min-core-biased search [NRS’13]

= Proof compression:
o Exponential-time transformations [GKS'06]

o Linear time transformations
= “Recycle pivots” [BFHSS'08], ...

45

Core compression (smaller core)

= A basic approach: run until reaching a fixpoint [chaff]

initially last_core = ()

C

SAT solver

core

core ==
last_core ?

no
last_core = core

Core compression (minimal core)

Initially ¢’s clauses are unmarked

Return ¢

l%aﬂ‘ed

A 4

Remove an unmarked clause ¢ € ¢

v

SAT (o) ?

mark ¢

A

¢ = core

47

Proot-compression
linear-time transformation / “Recycle-pivots”

= Based on the following fact:
a Every resolution proof can be made ‘regular

o ... which means that each pivot appears not more than
once on every path.

48

Proot-compression
linear-time transformation / “Recycle-pivots”

49

Proot-compression
linear-time transformation / “Recycle-pivots”

Reconstruct proof

Collect “removable literals”

50

Proot-compression
linear-time transformation / “Recycle-pivots”

51

Proot-compression
linear-time transformation / “Recycle-pivots”

Resolution graphs are DAGs
o So, a node is on more than one path to the empty clause

52

Proot-compression
linear-time transformation / “Recycle-pivots”

= Resolution graphs are DAGs
o S0, a node is on more than one path to the empty clause

53

Proot-compression
linear-time transformation / “Recycle-pivots”

54

‘ Proot-compression
linear-time transformation / “Recycle-pivots”

Does A dominate B ?

Dominance relation
can be found in
O(|E| log |V])

Problem: need to be
updated each time.

55

Proot-compression
linear-time transformation / “Recycle-pivots”

Possible solution:

o Stop propagating information across nodes with more than
one child.

56

Proot-compression
linear-time transformations /recent advances

o P. Fontaine, S. Merz and B. W.Paleo. Compression of Propositional
Resolution Proofs via Partial Regularization. In CADE’11.

o R. Bruttomesso, S.F. Rollini, N. Sharygina, and A. Tsitovich. Flexible
Interpolation with Local Proof Transformations. In ICCAD’10.

o S.F. Rollini, R. Bruttomesso and N. Sharygina. An Efficient and Flexible
Approach to Resolution Proof Reduction. In HVC’10.

o P. Fontaine, S. Merz and B. W.Paleo. Compression of Propositional
Resolution Proofs via Partial Regularization. In CADE’11.

o S. Cotton. Two Techniques for Minimizing Resolution Proofs. In SAT’10.

All implemented in PeRIPLO by S. Rollini. Together they reduce the proof size by ~40%.
57

Summary

= SAT and CSP are not only about finding models
o They can provide proofs

= Proofs are important for
o validation
o extracting cores
o various formal-verification techniques

= Minimizing proofs/cores is a subject for intense research.

58

‘ Questions ?

59

