SAT, CSP, and proofs

Ofer Strichman Technion, Haifa

Tutorial HVC'13

The grand plan for today

- Intro: the role of SAT, CSP and proofs in verification
- SAT how it works, and how it produces proofs
- CSP how it works, and how it produces proofs
- Making proofs smaller

Why SAT?

```
Example: is (x_1 \land (x_2 \lor \neg x_1)) satisfiable? x_1, x_2 \in \mathcal{B}
```

- Applications in verification:
 - Formal verification:
 - (Bounded) model checking for hardware [1999 --]
 - Over a dozen commerncial tools
 - (Bounded) model checking for software [2001 --]
 - □ CBMC, SAT-ABS, CLLVM, ...
 - Satisfiability Modulo Theories (SMT)
 [2003 --]
 - □ e.g. MS Z3 used in dozens of software analysis tools (SymDiff, VCC, Havoc, Spec#, ...)

Why SAT?

```
Example: is (x_1 \land (x_2 \lor \neg x_1)) satisfiable? x_1, x_2 \in \mathcal{B}
```

- Applications in verification:
 - Simulation:
 - Test generation for hardware
 - Test generation for software via SMT
 - □ MS-SAGE, KLEE, ...

Why CSP (Constraints Satisfaction Problem)?

Example:

```
is (AllDiff(x_1, x_2, x_3) \vee x_1 < x_2 + 3 \wedge x_2 > x_3 - 1)) satisfiable ? x_1, x_2, x_3 \in [0..10] \cap \mathcal{Z}
```

- Applications in verification:
 - Formal verification: ??
 - Simulation: test generation for hardware

Why CSP (Constraints Satisfaction Problem)?

Example:

```
is (AllDiff(x_1, x_2, x_3) \vee x_1 < x_2 + 3 \wedge x_2 > x_3 - 1)) satisfiable ? x_1, x_2, x_3 \in [0..10] \cap \mathcal{Z}
```

- A Higher-level modeling language
 - Can lead to an order of magniture smaller model size.
 - Does not matter much in practice
- Certain constraints can be solved faster than in SAT
 - Some (e.g. "all-different") can be solved directly in P

SAT and CSP

- SAT is crawling towards CSP
 - Various SAT solvers now support high-level constraints over Boolean variables:
 - Cripto-minisat supports XOR constraints
 - MiniSat+ supports cardinality constraints $\sum w_i x_i \leq c$

- CSP is crawling towards SAT:
 - Some solvers support reduction to SAT
 - Solution strategy now mimics SAT

Why proofs?

- Traditionally the focus was on finding models
 - No information was given in case of UNSAT
- As of Chaff (2003 --) solvers produce proofs
 - Originally just to validate result

Why proofs?

Several killer-applications (SAT):

- Validate UNSAT results
- From the proof we can extract an unsat core
 - Used in formal verification [AM03, KKB09, BKOSSB07...]
- Uses of the proof itself:
 - Interpolation-based model checking [M03].

Can we foresee usage for proofs in CSP ?

The grand plan for today

- Intro: the role of SAT, CSP and proofs in verification
- SAT how it works, and how it produces proofs
- CSP how it works, and how it produces proofs
- Making proofs smaller

CNF-SAT

Conjunctive Normal Form: Conjunction of disjunction of literals. Example:

$$(\neg x_1 \lor \neg x_2) \land (x_2 \lor x_4 \lor \neg x_1) \land \dots$$

- Polynomial transformation to CNF due to Tseitin (1970)
 - Requires adding auxiliary variables.

Main steps – SAT

<u>SAT</u>

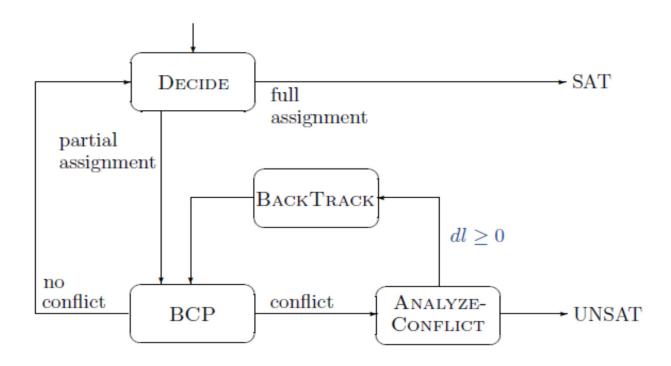
- "Decide"
 - Variable, value
- "Boolean Constraints Propagation (BCP)"
 - infer implied assignments
- "Analyze conflict"
 - applies learning
 - computes backtracking level

About that "constraints propagation"

• given $(\neg x_1 \lor \neg x_2) \land (x_2 \lor x_4 \lor \neg x_1) \land ...$

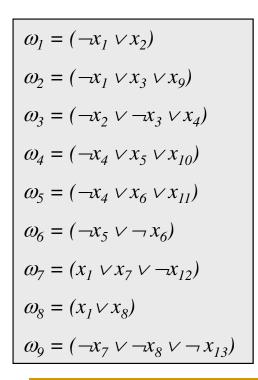
BCP:
$$x_1 = 1 \Rightarrow x_2 = 0 \Rightarrow x_4 = 1 \Rightarrow ...$$

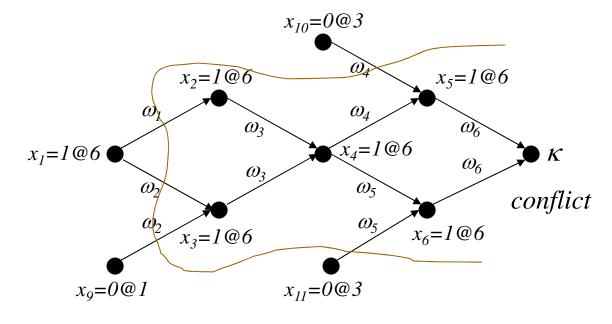
SAT essentials



Implication graphs and learning

Current truth assignment: $\{x_9=0@1, x_{10}=0@3, x_{11}=0@3, x_{12}=1@2, x_{13}=1@2\}$ Current decision assignment: $\{x_1=1@6\}$





We learn the *conflict clause* ω_{10} : $(\neg x_1 \lor x_9 \lor x_{11} \lor x_{10})$

Implication graph, flipped assignment

$$\omega_{l} = (\neg x_{1} \lor x_{2})$$

$$\omega_{2} = (\neg x_{1} \lor x_{3} \lor x_{9})$$

$$\omega_{3} = (\neg x_{2} \lor \neg x_{3} \lor x_{4})$$

$$\omega_{4} = (\neg x_{4} \lor x_{5} \lor x_{10})$$

$$\omega_{5} = (\neg x_{4} \lor x_{6} \lor x_{11})$$

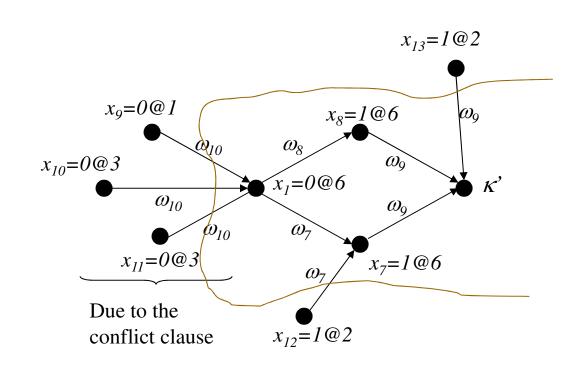
$$\omega_{6} = (\neg x_{5} \lor x_{6})$$

$$\omega_{7} = (x_{1} \lor x_{7} \lor \neg x_{12})$$

$$\omega_{8} = (x_{1} \lor x_{8})$$

$$\omega_{9} = (\neg x_{7} \lor \neg x_{8} \lor \neg x_{13})$$

$$\omega_{10} : (\neg x_{1} \lor x_{9} \lor x_{11} \lor x_{10})$$



We learn the *conflict clause* ω_{II} : $(\neg x_{13} \lor x_9 \lor x_{10} \lor x_{11} \lor \neg x_{12})$

Non-chronological backtracking

Which assignments caused the conflicts?

$$X_{9}=0@1$$
 $X_{10}=0@3$
 $X_{11}=0@3$
 $X_{12}=1@2$
 $X_{13}=1@2$
These assignments
Are sufficient for
Causing a conflict.

3 **Decision** level 4 5 6 K

Backtrack to decision level 3

Nonchronological backtracking

Learning and resolution

- Learning of a clause = inference by resolution.
 - To be explained
- This is the key for producing a machine-checkable proof

Resolution

...By example:

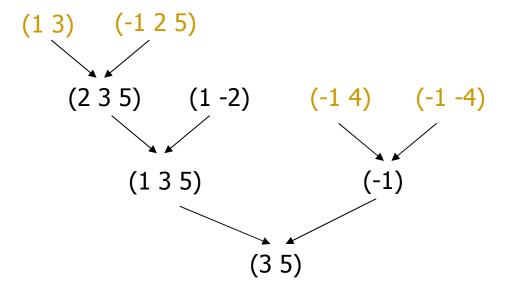
$$\frac{(x_1 \lor x_2) \qquad (\neg x_1 \lor x_3 \lor x_4)}{(x_2 \lor x_3 \lor x_4)}$$

Formally:

$$\frac{(a_1 \vee \ldots \vee a_n \vee \beta) \qquad (b_1 \vee \ldots \vee b_m \vee (\neg \beta))}{(a_1 \vee \ldots \vee a_n \vee b_1 \vee \ldots \vee b_m)} \text{ (Binary Resolution)}$$

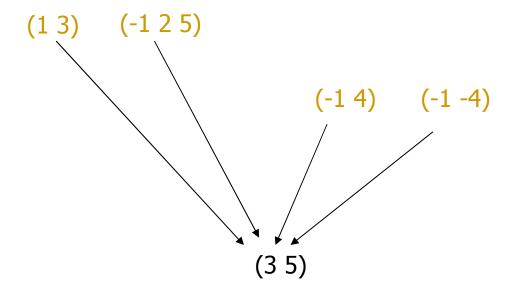
Resolution proof

A proof: $(1\ 3) \land (-1\ 2\ 5) \land (-1\ 4) \land (-1\ -4) \vdash (3\ 5)$



Resolution proof \Rightarrow Hyper resolution proof

A proof: $(1\ 3) \land (-1\ 2\ 5) \land (-1\ 4) \land (-1\ -4) \vdash (3\ 5)$



Conflict clauses and resolution

Consider the following example:

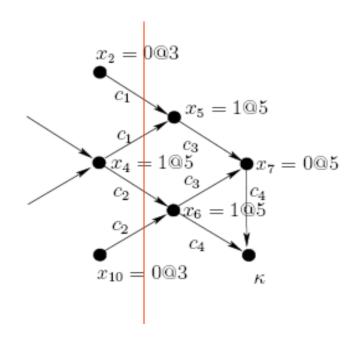
$$c_1 = (\neg x_4 \lor x_2 \lor x_5)$$

$$c_2 = (\neg x_4 \lor x_{10} \lor x_6)$$

$$c_3 = (\neg x_5 \lor \neg x_6 \lor \neg x_7)$$

$$c_4 = (\neg x_6 \lor x_7)$$

$$\vdots \qquad \vdots$$



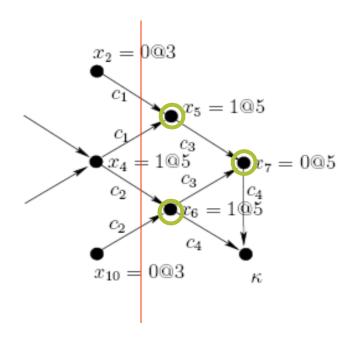
- Conflict clause: c_5 : $(x_2 \lor \neg x_4 \lor x_{10})$
- We show that $c_{\scriptscriptstyle 5}$ is inferred by resolution from $c_{\scriptscriptstyle 1},\dots,c_{\scriptscriptstyle 4}$

Conflict clauses and resolution

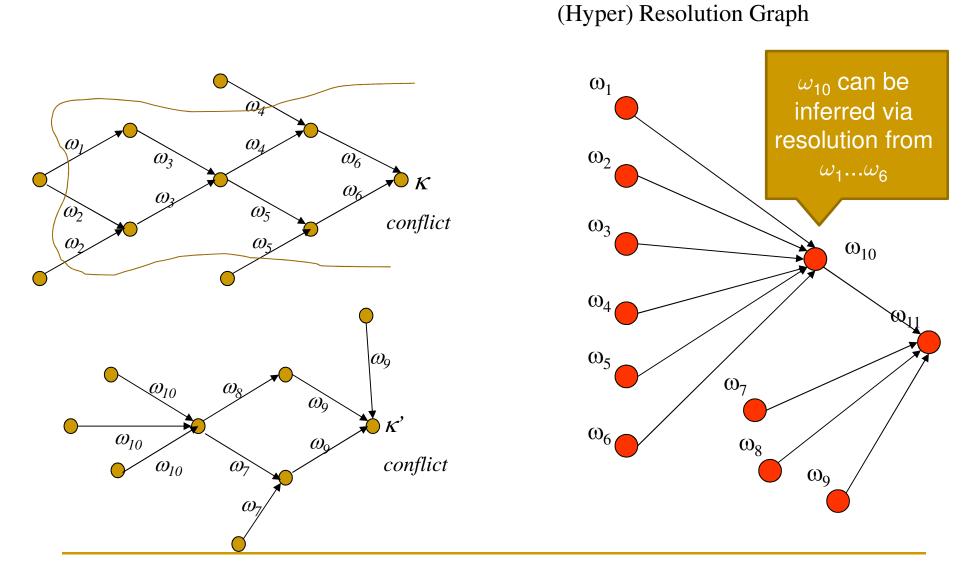
■ Conflict clause: c_5 : $(x_2 \lor \neg x_4 \lor x_{10})$

```
c_1 = (\neg x_4 \lor x_2 \lor x_5)
c_2 = (\neg x_4 \lor x_{10} \lor x_6)
c_3 = (\neg x_5 \lor \neg x_6 \lor \neg x_7)
c_4 = (\neg x_6 \lor x_7)
\vdots \qquad \vdots
```

- **BCP** order: x_4, x_5, x_6, x_7
 - □ T1 = Res(c_4, c_3, x_7) = ($\neg x_5 \lor \neg x_6$)
 - □ T2 = Res(T1, c_2 , x_6) = (¬ x_4 ∨ ¬ x_5 ∨ X_{10})
 - □ T3 = Res(T2,c₁,x₅) = $(x_2 \lor \neg x_4 \lor x_{10})$



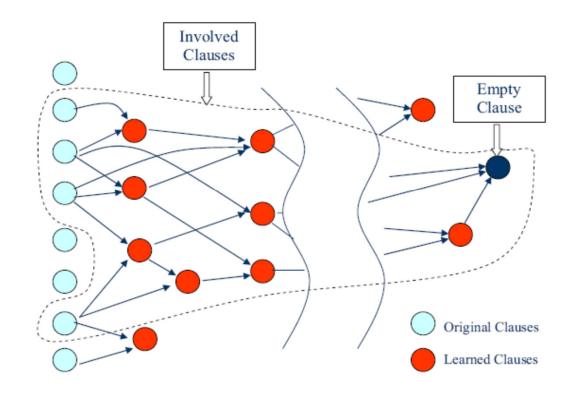
The Resolution-Graph



The resolution graph

What is it good for ?

Example: for computing an Unsatisfiable core



[Picture Borrowed from Zhang, Malik SAT'03]

The grand plan for today

- Intro: the role of SAT, CSP and proofs in verification
- SAT how it works, and how it produces proofs
- CSP how it works, and how it produces proofs
- Making proofs smaller

Main steps – SAT and CSP*

<u>SAT</u>

<u>CSP</u>

- "Decide"
 - Variable, value

Same

- "Boolean Constraints Propagation (BCP)"
 - infer implied assignments
- "Boolean Constraints Propagation (CP)"
 - same

- "Analyze conflict"
 - applies learning
 - computes backtracking level

Same

^{*}As implemented in PCS / Michael Veksler

About that "constraints propagation"

■ Given $x_1, x_2, x_3 \in [1..3]$, AllDifferent(x_1, x_2, x_3)

CP:
$$x_1 = 1 \Rightarrow x_2, x_3 \in [2..3]$$

What about CSP proofs?

- SAT solvers generate proofs:
 - From initial clauses to ().
 - Inference is via the binary-resolution rule.
- Unlike SAT solvers, CSPs:
 - have non-Boolean domains, and
 - non-clausal constraints.
- Can this gap be bridged?
 - The following is based on [SV10]

Signed CNF

... by examples:

- A positive signed literal: $a \in \{1, 2, 3\}$.
- A negative signed literal: $a \in \overline{\{1,2,4\}}$.
- A signed clause is a disjunction of signed literals. e.g.,

$$(a \in \{1, 5\} \lor b \in \overline{\{4\}})$$

Signed resolution

A binary-resolution rule for signed-CNF:

$$\frac{(Literals_1 \lor x \in A) \quad (x \in B \lor Literals_2)}{(Literals_1 \lor x \in A \cap B \lor Literals_2)} (\operatorname{sRes}(x))$$

- Signed-clauses ✓
- What about other constraints ?

e.g.
$$\neq$$
, \leq , all Different (v_1, \ldots, v_k)

should we just convert CSP to signed CNF?

Signed resolution

- Q: should we just convert CSP to signed CNF?
- A: No, because it is generally inefficient:
 - □ e.g., x ≠ y requires:

$$(x \in \overline{\{1\}} \lor y \in \overline{\{1\}}) \land (x \in \overline{\{2\}} \lor y \in \overline{\{2\}}) \land \dots$$

Towards a solution...

- Solution: introduce clauses *lazily*.
- Consider a general constraint c, such that:
 - □ In the context of $I_1 \wedge I_2 \wedge ... \wedge I_n$,
 - propagation of c implies I :

$$(I_1 \wedge I_2 \wedge ... \wedge I_n \wedge c) \rightarrow I$$

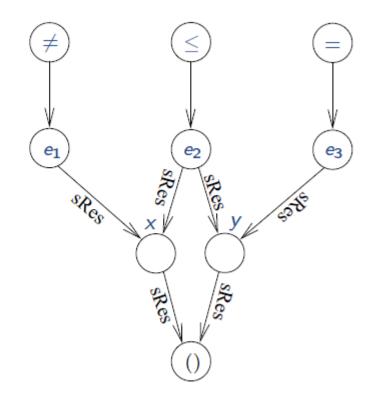
Towards a solution...

$$(I_1 \wedge I_2 \wedge ... \wedge I_n \wedge c) \rightarrow I$$

Find an explanation clause e such that:

- $\hfill \square$ e is not too strong: c \rightarrow e
- \Box e is strong enough: $(I_1 \land I_2 \land ... \land I_n \land e) \rightarrow I$

The structure of a CSP proof



 e_1, e_2, e_3 – explanation clauses.

Explanation rules

For every constraint there is an explanation clause:

$$\frac{\langle \textit{constraint} \rangle}{\langle \textit{explanation clause} \rangle} \, (\langle \textit{rule name} \rangle)$$

• Constraint: $x \neq y$ $\frac{x \neq y}{x \in \overline{\{m\}} \lor y \in \overline{\{m\}}} (Ne(m))$

m =the value that trigerred the rule

Propagation:

- context: l_1 : (x = 1), l_2 : $(y \in [1..100])$.
- constraint: $c: x \neq y$.
- implies: $I: (y \in [2..100])$.

$$e: (x \in \overline{\{1\}} \lor y \in \overline{\{1\}})$$
 // $Ne(1)$

... indeed:

- $c \xrightarrow{Ne(1)} e$
- $(I_1 \wedge I_2 \wedge e) \longrightarrow I$

• Constraint: $x \le y$

$$\frac{x \leq y}{(x \in (-\infty, m] \lor y \in [m+1, \infty))} (LE(m))$$

Instantiate m with max(domain(y))

Propagation:

- context: l_1 : $(x \in [1..3]), l_2$: $(y \in [0..2])$
- constraint: $c: x \leq y$.
- implies: $I: x \in [1..2]$

Explanation:

•
$$e: (x \in (-\infty, 2] \lor y \in [3, \infty)).$$
 // = $LE(2)$

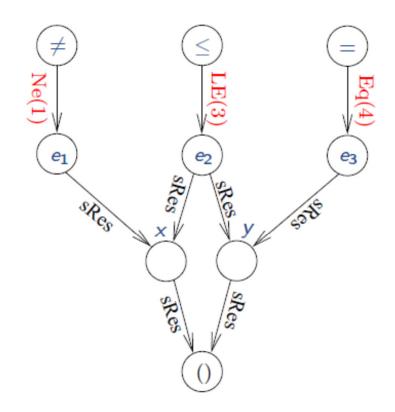
...indeed:

- $c \xrightarrow{\mathsf{LE}(2)} e$
- $(I_1 \wedge I_2 \wedge e) \longrightarrow I$

Each constraint has its rule ...

Constraint	Name	Inference rule
a ≠ b	Ne(m)	$\frac{a \neq b}{(a \neq m \lor b \neq m)}$
$x \le y$	LE(m)	$\frac{x \leq y}{(x \in (-\infty, m] \lor y \in [m+1, \infty))}$
a = b	Eq(D)	$\frac{a=b}{(a\not\in D\lor b\in D)}$
$a \leq b + c$	$LE_{+}(m,n)$	$\cfrac{a \leq b + c}{\left(a \in \left(-\infty, \frac{m}{n} + n\right] \lor b \in \left[\frac{m}{n} + 1, \infty\right) \lor c \in \left[\frac{n}{n} + 1, \infty\right)\right)}$
a = b + c	EQ_{+}^{a} $(I_{b}, u_{b}, I_{c}, u_{c})$	$a = b + c$ $(a \in [l_b + l_c, u_b + u_c] \lor b \notin [l_b, u_b] \lor c \notin [l_c, u_c])$
$AllDiff(v_1,\ldots,v_k)$	AD(D, V)	$\frac{AllDiff(v_1,\ldots,v_k)}{(\bigvee_{v\in \mathbf{V}} v\not\in \mathbf{D})}$
:	:	:

So this is how the proof looks like...



 e_1, e_2, e_3 – explanation clauses.

The grand plan for today

- Intro: the role of SAT, CSP and proofs in verification
- SAT how it works, and how it produces proofs
- CSP how it works, and how it produces proofs
- Making proofs smaller

Minimizing the core

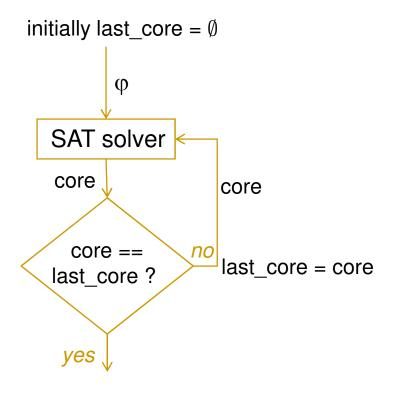
- The proof is not unique.
 - Different proofs / different cores.
- Can we find a minimum / minimal / smaller cores/proofs?

Minimizing the core

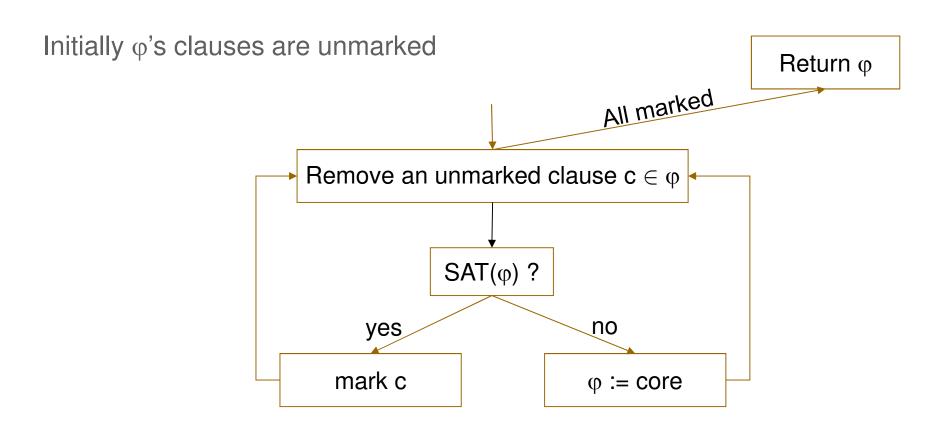
- Core compression
 - □ Smaller core [ZM03, ...]
 - Minimal core [DHN06, ...]
 - Min-core-biased search [NRS'13]
- Proof compression:
 - Exponential-time transformations [GKS'06]
 - Linear time transformations
 - "Recycle pivots" [BFHSS'08], ...

Core compression (smaller core)

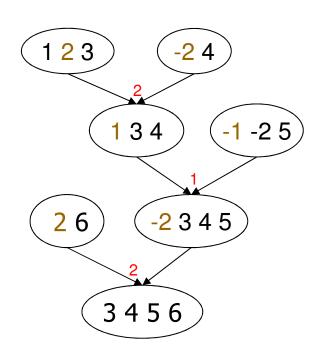
A basic approach: run until reaching a fixpoint [chaff]

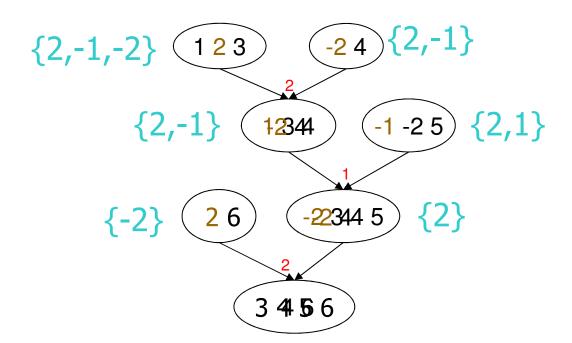


Core compression (minimal core)



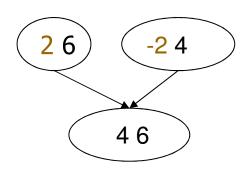
- Based on the following fact:
 - Every resolution proof can be made 'regular'
 - ... which means that each pivot appears not more than once on every path.



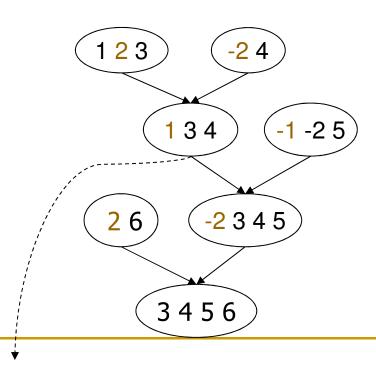


Reconstruct proof

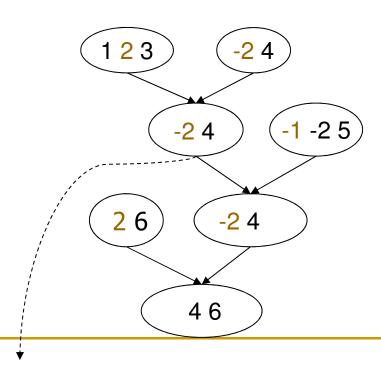
Collect "removable literals"

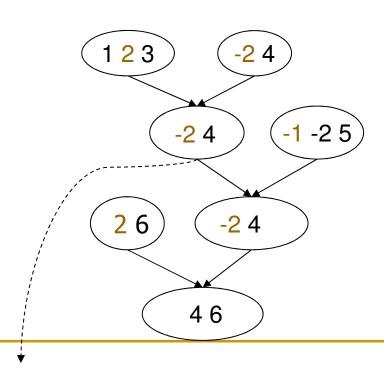


- Resolution graphs are DAGs
 - So, a node is on more than one path to the empty clause



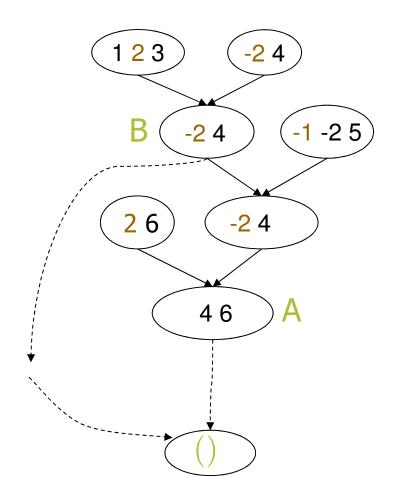
- Resolution graphs are DAGs
 - So, a node is on more than one path to the empty clause





Proof-compression

linear-time transformation / "Recycle-pivots"



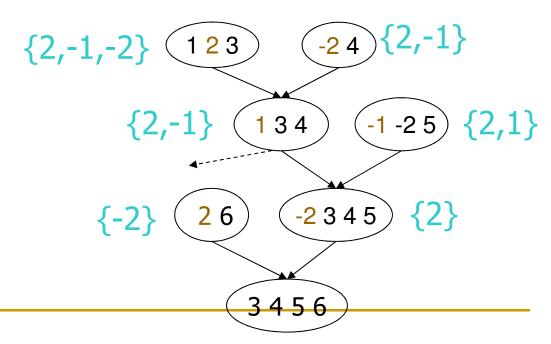
Does A dominate B?

Dominance relation can be found in O(|E| log |V|)

Problem: need to be updated each time.

Possible solution:

 Stop propagating information across nodes with more than one child.



Proof-compression linear-time transformations / recent advances

Recycle pivots with intersection

 P. Fontaine, S. Merz and B. W.Paleo. Compression of Propositional Resolution Proofs via Partial Regularization. In CADE'11.

Local transformation Framework

- R. Bruttomesso, S.F. Rollini, N. Sharygina, and A. Tsitovich. Flexible Interpolation with Local Proof Transformations. In ICCAD'10.
- S.F. Rollini, R. Bruttomesso and N. Sharygina. *An Efficient and Flexible Approach to Resolution Proof Reduction*. In HVC'10.

Lower units

 P. Fontaine, S. Merz and B. W.Paleo. Compression of Propositional Resolution Proofs via Partial Regularization. In CADE'11.

Structural hashing

□ S. Cotton. *Two Techniques for Minimizing Resolution Proofs*. In SAT'10.

Summary

- SAT and CSP are not only about finding models
 - They can provide proofs
- Proofs are important for
 - validation
 - extracting cores
 - various formal-verification techniques
- Minimizing proofs/cores is a subject for intense research.

Questions?