
1

SAT, CSP, and proofs

Ofer Strichman

Technion, Haifa

Tutorial HVC’13

2

The grand plan for today

� Intro: the role of SAT, CSP and proofs in verification

� SAT – how it works, and how it produces proofs

� CSP - how it works, and how it produces proofs

� Making proofs smaller

3

Why SAT ?

� Applications in verification:

� Formal verification:

� (Bounded) model checking for hardware [1999 --]

� Over a dozen commerncial tools

� (Bounded) model checking for software [2001 --]

� CBMC, SAT-ABS, CLLVM, …

� Satisfiability Modulo Theories (SMT) [2003 --]

� e.g. MS – Z3 used in dozens of software analysis tools
(SymDiff, VCC, Havoc, Spec#, …)

Example: is (x1 Æ (x2 Ç ¬x1)) satisfiable ?

x1 ,x2 ∈ B

4

Why SAT ?

Example: is (x1 Æ (x2 Ç ¬x1)) satisfiable ?

x1 ,x2 ∈ B

� Applications in verification:

� Simulation:

� Test generation for hardware

� Test generation for software via SMT

� MS-SAGE, KLEE, …

5

Why CSP (Constraints Satisfaction Problem) ?

Example:

is (AllDiff(x1 ,x2, x3) Ç x1 < x2 + 3 Æ x2 > x3 - 1)) satisfiable ?

x1 ,x2 , x3 ∈ [0..10] � Z

� Applications in verification:

� Formal verification: ??

� Simulation: test generation for hardware

6

Why CSP (Constraints Satisfaction Problem) ?

� A Higher-level modeling language

� Can lead to an order of magniture smaller model size.

� Does not matter much in practice

� Certain constraints can be solved faster than in SAT

� Some (e.g. “all-different”) can be solved directly in P

Example:

is (AllDiff(x1 ,x2, x3) Ç x1 < x2 + 3 Æ x2 > x3 - 1)) satisfiable ?

x1 ,x2 , x3 ∈ [0..10] � Z

7

SAT and CSP

� SAT is crawling towards CSP

� Various SAT solvers now support high-level constraints

over Boolean variables:

� Cripto-minisat supports XOR constraints

� MiniSat+ supports cardinality constraints

� CSP is crawling towards SAT:

� Some solvers support reduction to SAT

� Solution strategy now mimics SAT

8

Why proofs ?

� Traditionally the focus was on finding models

� No information was given in case of UNSAT

� As of Chaff (2003 --) solvers produce proofs

� Originally just to validate result

9

Why proofs ?

Several killer-applications (SAT):

� Validate UNSAT results

� From the proof we can extract an unsat core

� Used in formal verification [AM03, KKB09, BKOSSB07…]

� Uses of the proof itself:

� Interpolation-based model checking [M03].

� Can we foresee usage for proofs in CSP ?

10

The grand plan for today

� Intro: the role of SAT, CSP and proofs in verification

� SAT – how it works, and how it produces proofs

� CSP - how it works, and how it produces proofs

� Making proofs smaller

11

CNF-SAT

� Conjunctive Normal Form: Conjunction of disjunction of

literals. Example:
(¬x1 Ç ¬x2) Æ (x2 Ç x4 Ç ¬x1) Æ ...

� Polynomial transformation to CNF due to Tseitin (1970)

� Requires adding auxiliary variables.

12

Main steps – SAT

� “Decide”

� Variable, value

� “Boolean Constraints Propagation

(BCP)”

� infer implied assignments

� “Analyze conflict”

� applies learning

� computes backtracking level

SAT

13

About that “constraints propagation”

� given (¬x1 Ç ¬x2) Æ (x2 Ç x4 Ç ¬x1) Æ ...

BCP: x1 = 1 ⇒ x2 = 0 ⇒ x4 = 1 ⇒…

14

SAT essentials

15

Implication graphs and learning

ω1 = (¬x1 ∨ x2)

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ ¬ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

Current truth assignment: {x9=0@1 ,x10=0@3, x11=0@3, x12=1@2, x13=1@2}

Current decision assignment: {x1=1@6}

ω6

ω6
κ

conflict

x9=0@1

x1=1@6

x10=0@3

x11=0@3

x5=1@6
ω4

ω4

ω5

ω5 x6=1@6
ω2

ω2

x3=1@6

ω1

x2=1@6

ω3

ω3

x4=1@6

We learn the conflict clause ω10 : (¬x1 Ç x9 Ç x11 Ç x10)

and backtrack to the highest (deepest) dec. level in this clause (6).

16

Implication graph, flipped assignment

x1=0@6

x11=0@3

x10=0@3

x9=0@1

x12=1@2

x7=1@6ω7

ω7

x8=1@6

ω8

ω10

ω10

ω10

x13=1@2

ω9

ω9

κ’

ω9

Due to the

conflict clause

ω1 = (¬x1 ∨ x2)

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

ω10 : (¬ x1 Ç x9 Ç x11 Ç x10)

We learn the conflict clause ω11 : (¬x13 Ç x9 Ç x10 Ç x11 Ç ¬x12)

and backtrack to the highest (deepest) dec. level in this clause (3).

17

Non-chronological backtracking

Non-

chronological

backtracking

x1

4

5

6

κ κ’

Decision
level

Which assignments caused

the conflicts ?

x9= 0@1

x10= 0@3

x11= 0@3

x12= 1@2

x13= 1@2

Backtrack to decision level 3

3

These assignments

Are sufficient for

Causing a conflict.

18

Learning and resolution

� Learning of a clause = inference by resolution.

� To be explained

� This is the key for producing a machine-checkable proof

19

Resolution

� …By example:

� Formally:

20

Resolution proof

(1 3) (-1 2 5)

(2 3 5) (1 -2)

(1 3 5)

(-1 4) (-1 -4)

(-1)

(3 5)

A proof: (1 3) Æ (-1 2 5) Æ (-1 4) Æ (-1 -4)
 (3 5)

21

Resolution proof ⇒ Hyper resolution proof

(1 3) (-1 2 5)

(-1 4) (-1 -4)

(3 5)

A proof: (1 3) Æ (-1 2 5) Æ (-1 4) Æ (-1 -4)
 (3 5)

22

� Consider the following example:

� Conflict clause: c: (x2 Ç ¬x4 Ç x10)

� We show that c is inferred by resolution from c,…,c

Conflict clauses and resolution

23

� Conflict clause: c5: (x2 Ç ¬x4 Ç x10)

� BCP order: x4,x5,x6,x7

� T1 = Res(c4,c3,x7) = (¬x5 Ç ¬x6)

� T2 = Res(T1, c2, x6) = (¬x4 Ç ¬x5 Ç X10)

� T3 = Res(T2,c1,x5) = (x2 ÇÇÇÇ ¬¬¬¬x4 ÇÇÇÇ x10)

Conflict clauses and resolution

24

The Resolution-Graph

ω1

ω2

ω3

ω4

ω5

ω6

ω10

ω7

ω8

ω9

ω11

ω5

ω5

ω6

ω6
κ

conflict

ω4

ω4

ω2

ω2

ω1 ω3

ω3

ω7

ω7

ω8

ω10

ω10

ω10 ω9

ω9

κ’

conflict

ω9

(Hyper) Resolution Graph

ω10 can be

inferred via

resolution from
ω1...ω6

25

The resolution graph

What is it good for ?

Example: for computing an Unsatisfiable core

[Picture Borrowed from Zhang, Malik SAT’03]

26

The grand plan for today

� Intro: the role of SAT, CSP and proofs in verification

� SAT – how it works, and how it produces proofs

� CSP - how it works, and how it produces proofs

� Making proofs smaller

27

Main steps – SAT and CSP*

� “Decide”

� Variable, value

� “Boolean Constraints

Propagation (BCP)”

� infer implied assignments

� “Analyze conflict”

� applies learning

� computes backtracking level

� Same

� “Boolean Constraints

Propagation (CP)”

� same

� Same

SAT CSP

*As implemented in PCS / Michael Veksler

28

About that “constraints propagation”

� Given x1 , x2 , x3 ∈ [1..3], AllDifferent(x1 , x2 , x3)

CP: x1 = 1 ⇒ x2 , x3 ∈ [2..3]

29

What about CSP proofs ?

� SAT solvers generate proofs:

� From initial clauses to ().

� Inference is via the binary-resolution rule.

� Unlike SAT solvers, CSPs:

� have non-Boolean domains, and

� non-clausal constraints.

� Can this gap be bridged?

� The following is based on [SV10]

30

Signed CNF

31

Signed resolution

� A binary-resolution rule for signed-CNF:

� Signed-clauses �

� What about other constraints ?

e.g.

should we just convert CSP to signed CNF?

32

Signed resolution

� Q: should we just convert CSP to signed CNF?

� A: No, because it is generally inefficient:

� e.g., x ≠ y requires:

33

Towards a solution…

� Solution: introduce clauses lazily.

� Consider a general constraint c, such that:

� In the context of l1 Æ l2 Æ … Æ ln,

� propagation of c implies I :

(l1 Æ l2 Æ …Æ ln Æ c) → l

34

Towards a solution…

(l1 Æ l2 Æ …Æ ln Æ c) → l

� Find an explanation clause e such that:

� e is not too strong: c → e

� e is strong enough: (l1 Æl2 Æ …Æ ln Æ e) → l

35

The structure of a CSP proof

36

Explanation rules

37

Explanation rules – example 1

parameterized

m = the value that trigerred the rule

38

Explanation rules – example 1

39

Explanation rules – example 2

Instantiate m with max(domain(y))

40

Explanation rules – example 2

41

Each constraint has its rule …

42

So this is how the proof looks like…

43

The grand plan for today

� Intro: the role of SAT, CSP and proofs in verification

� SAT – how it works, and how it produces proofs

� CSP - how it works, and how it produces proofs

� Making proofs smaller

44

Minimizing the core

� The proof is not unique.

� Different proofs / different cores.

� Can we find a minimum / minimal / smaller cores/proofs?

45

Minimizing the core

� Core compression

� Smaller core [ZM03, …]

� Minimal core [DHN06, …]

� Min-core-biased search [NRS’13]

� Proof compression:

� Exponential-time transformations [GKS’06]

� Linear time transformations

� “Recycle pivots” [BFHSS’08], …

46

Core compression (smaller core)

� A basic approach: run until reaching a fixpoint [chaff]

SAT solver

ϕ

core ==

last_core ?

corecore

last_core = core

yes

no

initially last_core = ∅

47

Remove an unmarked clause c ∈ ϕ

SAT(ϕ) ?

mark c

yes

ϕ := core

no

Initially ϕ’s clauses are unmarked
Return ϕ

Core compression (minimal core)

48

Proof-compression

linear-time transformation / “Recycle-pivots”

� Based on the following fact:

� Every resolution proof can be made ‘regular’

� … which means that each pivot appears not more than

once on every path.

49

3 4 5 6

2 6

-1 -2 51 3 4

1 2 3 -2 4

-2 3 4 5

Proof-compression

linear-time transformation / “Recycle-pivots”

2

1

2

50

3 4 5 6

2 6

-1 -2 51 3 4

1 2 3 -2 4

{2}{-2}

{2,1}{2,-1}

{2,-1,-2} {2,-1}

-2 4

-2 3 4 5-2 4

4 6

Proof-compression

linear-time transformation / “Recycle-pivots”

Collect “removable literals”

2

1

2

Reconstruct proof

51

2 6 -2 4

4 6

Proof-compression

linear-time transformation / “Recycle-pivots”

52

� Resolution graphs are DAGs

� So, a node is on more than one path to the empty clause

3 4 5 6

2 6

-1 -2 51 3 4

1 2 3 -2 4

-2 3 4 5

Proof-compression

linear-time transformation / “Recycle-pivots”

53

� Resolution graphs are DAGs

� So, a node is on more than one path to the empty clause

2 6

-1 -2 5

1 2 3 -2 4

-2 4

-2 4

4 6

Proof-compression

linear-time transformation / “Recycle-pivots”

54

2 6

-1 -2 5

1 2 3 -2 4

-2 4

-2 4

4 6

Proof-compression

linear-time transformation / “Recycle-pivots”

55

2 6

-1 -2 5

1 2 3 -2 4

-2 4

-2 4

4 6

Does A dominate B ?

Dominance relation
can be found in
O(|E| log |V|)

A

B

()

Problem: need to be
updated each time.

Proof-compression

linear-time transformation / “Recycle-pivots”

56

� Possible solution:

� Stop propagating information across nodes with more than

one child.

3 4 5 6

2 6

-1 -2 51 3 4

1 2 3 -2 4

{2}{-2}

{2,1}{2,-1}

{2,-1,-2} {2,-1}

-2 3 4 5

Proof-compression

linear-time transformation / “Recycle-pivots”

57

� Recycle pivots with intersection

� P. Fontaine, S. Merz and B. W.Paleo. Compression of Propositional

Resolution Proofs via Partial Regularization. In CADE’11.

� Local transformation Framework

� R. Bruttomesso, S.F. Rollini, N. Sharygina, and A. Tsitovich. Flexible

Interpolation with Local Proof Transformations. In ICCAD’10.

� S.F. Rollini, R. Bruttomesso and N. Sharygina. An Efficient and Flexible

Approach to Resolution Proof Reduction. In HVC’10.

� Lower units

� P. Fontaine, S. Merz and B. W.Paleo. Compression of Propositional

Resolution Proofs via Partial Regularization. In CADE’11.

� Structural hashing

� S. Cotton. Two Techniques for Minimizing Resolution Proofs. In SAT’10.

Proof-compression

linear-time transformations /recent advances

All implemented in PeRIPLO by S. Rollini. Together they reduce the proof size by ~40%.

58

Summary

� SAT and CSP are not only about finding models

� They can provide proofs

� Proofs are important for

� validation

� extracting cores

� various formal-verification techniques

� Minimizing proofs/cores is a subject for intense research.

59

Questions ?

