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The grand plan for today 

� Intro: the role of SAT, CSP and proofs in verification

� SAT – how it works, and how it produces proofs

� CSP - how it works, and how it produces proofs

� Making proofs smaller
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Why SAT ?

� Applications in verification:

� Formal verification: 

� (Bounded) model checking for hardware [1999 -- ]

� Over a dozen commerncial tools

� (Bounded) model checking for software [2001 -- ]

� CBMC, SAT-ABS, CLLVM, … 

� Satisfiability Modulo Theories (SMT) [2003 -- ]

� e.g. MS – Z3 used in dozens of software analysis tools 
(SymDiff, VCC, Havoc, Spec#, …)

Example: is (x1 Æ (x2 Ç ¬x1)) satisfiable ? 

x1 ,x2 ∈ B
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Why SAT ?

Example: is (x1 Æ (x2 Ç ¬x1)) satisfiable ? 

x1 ,x2 ∈ B

� Applications in verification:

� Simulation:

� Test generation for hardware

� Test generation for software via SMT

� MS-SAGE, KLEE, …
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Why CSP (Constraints Satisfaction Problem) ?

Example: 

is (AllDiff(x1 ,x2, x3 ) Ç x1 < x2 + 3 Æ x2 > x3 - 1 )) satisfiable ? 

x1 ,x2 , x3 ∈ [0..10] � Z

� Applications in verification:

� Formal verification: ??

� Simulation: test generation for hardware
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Why CSP (Constraints Satisfaction Problem) ?

� A Higher-level modeling language

� Can lead to an order of magniture smaller model size. 

� Does not matter much in practice

� Certain constraints can be solved faster than in SAT

� Some (e.g. “all-different”) can be solved directly in P

Example: 

is (AllDiff(x1 ,x2, x3 ) Ç x1 < x2 + 3 Æ x2 > x3 - 1 )) satisfiable ? 

x1 ,x2 , x3 ∈ [0..10] � Z
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SAT and CSP

� SAT is crawling towards CSP

� Various SAT solvers now support high-level constraints 

over Boolean variables:

� Cripto-minisat supports XOR constraints

� MiniSat+ supports cardinality constraints

� CSP is crawling towards SAT: 

� Some solvers support reduction to SAT

� Solution strategy now mimics SAT
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Why proofs ? 

� Traditionally the focus was on finding models

� No information was given in case of UNSAT

� As of Chaff (2003 -- ) solvers produce proofs

� Originally just to validate result
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Why proofs ? 

Several killer-applications (SAT):

� Validate UNSAT results

� From the proof we can extract an unsat core

� Used in formal verification [AM03, KKB09, BKOSSB07…]

� Uses of the proof itself:

� Interpolation-based model checking [M03].

� Can we foresee usage for proofs in CSP ?
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The grand plan for today 

� Intro: the role of SAT, CSP and proofs in verification

� SAT – how it works, and how it produces proofs

� CSP - how it works, and how it produces proofs

� Making proofs smaller
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CNF-SAT

� Conjunctive Normal Form: Conjunction of disjunction of 

literals. Example:
(¬x1 Ç ¬x2) Æ (x2 Ç x4 Ç ¬x1) Æ ...

� Polynomial transformation to CNF due to Tseitin (1970)

� Requires adding auxiliary variables.
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Main steps – SAT 

� “Decide”

� Variable, value

� “Boolean Constraints Propagation 

(BCP)”

� infer implied assignments

� “Analyze conflict”

� applies learning

� computes backtracking level

SAT
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About that “constraints propagation”

� given   (¬x1 Ç ¬x2) Æ (x2 Ç x4 Ç ¬x1) Æ ...

BCP:  x1 = 1  ⇒ x2 = 0   ⇒ x4 = 1  ⇒…
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SAT essentials
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Implication graphs and learning

ω1 = (¬x1 ∨ x2) 

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ ¬ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

Current truth assignment: {x9=0@1 ,x10=0@3, x11=0@3, x12=1@2, x13=1@2}

Current decision assignment: {x1=1@6}

ω6

ω6
κ

conflict

x9=0@1

x1=1@6

x10=0@3

x11=0@3

x5=1@6
ω4

ω4

ω5

ω5 x6=1@6
ω2

ω2

x3=1@6

ω1

x2=1@6

ω3

ω3

x4=1@6

We learn the conflict clause ω10 : (¬x1 Ç x9 Ç x11 Ç x10)

and backtrack to the highest (deepest) dec. level in this clause (6).
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Implication graph, flipped assignment

x1=0@6

x11=0@3

x10=0@3

x9=0@1

x12=1@2

x7=1@6ω7

ω7

x8=1@6

ω8

ω10

ω10

ω10

x13=1@2

ω9

ω9

κ’

ω9

Due to the

conflict clause

ω1 = (¬x1 ∨ x2) 

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

ω10 : (¬ x1 Ç x9 Ç x11 Ç x10)

We learn the conflict clause ω11 : (¬x13 Ç x9 Ç x10 Ç x11 Ç ¬x12)

and backtrack to the highest (deepest) dec. level in this clause (3).
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Non-chronological backtracking

Non-

chronological

backtracking

x1

4

5

6

κ κ’

Decision 
level

Which assignments caused 

the conflicts ?

x9= 0@1

x10= 0@3

x11= 0@3

x12= 1@2

x13= 1@2

Backtrack to decision level 3

3

These assignments

Are sufficient for

Causing a conflict.
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Learning and resolution

� Learning of a clause = inference by resolution.

� To be explained

� This is the key for producing a machine-checkable proof
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Resolution

� …By example:

� Formally:
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Resolution proof

(1 3) (-1 2 5)

(2 3 5) (1 -2)

(1 3 5)

(-1 4) (-1 -4)

(-1)

(3 5)

A proof:  (1 3) Æ (-1 2 5) Æ (-1 4) Æ (-1 -4)   
 (3 5)
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Resolution proof ⇒ Hyper resolution proof

(1 3) (-1 2 5)

(-1 4) (-1 -4)

(3 5)

A proof:  (1 3) Æ (-1 2 5) Æ (-1 4) Æ (-1 -4)   
 (3 5)
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� Consider the following example:

� Conflict clause: c: (x2 Ç ¬x4 Ç x10)

� We show that c is inferred by resolution from c,…,c

Conflict clauses and resolution
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� Conflict clause: c5: (x2 Ç ¬x4 Ç x10)

� BCP order: x4,x5,x6,x7

� T1 = Res(c4,c3,x7) = (¬x5 Ç ¬x6)

� T2 = Res(T1, c2, x6) = (¬x4 Ç ¬x5 Ç X10 )

� T3 = Res(T2,c1,x5) = (x2 ÇÇÇÇ ¬¬¬¬x4 ÇÇÇÇ x10 )

Conflict clauses and resolution
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The Resolution-Graph 

ω1

ω2

ω3

ω4

ω5

ω6

ω10

ω7

ω8

ω9

ω11

ω5

ω5

ω6

ω6
κ

conflict

ω4

ω4

ω2

ω2

ω1 ω3

ω3

ω7

ω7

ω8

ω10

ω10

ω10 ω9

ω9

κ’

conflict

ω9

(Hyper) Resolution Graph

ω10 can be 

inferred via 

resolution from 
ω1...ω6
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The resolution graph

What is it good for ? 

Example: for computing an Unsatisfiable core

[Picture Borrowed from Zhang, Malik SAT’03]
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The grand plan for today 

� Intro: the role of SAT, CSP and proofs in verification

� SAT – how it works, and how it produces proofs

� CSP - how it works, and how it produces proofs

� Making proofs smaller
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Main steps – SAT and CSP*

� “Decide”

� Variable, value

� “Boolean Constraints 

Propagation (BCP)”

� infer implied assignments

� “Analyze conflict”

� applies learning

� computes backtracking level

� Same

� “Boolean Constraints 

Propagation (CP)”

� same

� Same

SAT CSP

*As implemented in PCS / Michael Veksler
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About that “constraints propagation”

� Given  x1 , x2 , x3 ∈ [1..3], AllDifferent(x1 , x2 , x3 ) 

CP: x1 = 1 ⇒ x2 , x3 ∈ [2..3] 
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What about CSP proofs  ?

� SAT solvers generate proofs:

� From initial clauses to ( ).

� Inference is via the binary-resolution rule.

� Unlike SAT solvers, CSPs:

� have non-Boolean domains, and

� non-clausal constraints.

� Can this gap be bridged?

� The following is based on [SV10]
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Signed CNF 
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Signed resolution

� A binary-resolution rule for signed-CNF:

� Signed-clauses �

� What about other constraints ?

e.g.

should we just convert CSP to signed CNF?
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Signed resolution

� Q: should we just convert CSP to signed CNF?

� A: No, because it is generally inefficient:

� e.g., x ≠ y requires:
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Towards a solution…

� Solution: introduce clauses lazily.

� Consider a general constraint c, such that:

� In the context of l1 Æ l2 Æ … Æ ln,

� propagation of c implies I :

(l1 Æ l2 Æ …Æ ln Æ c)  → l
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Towards a solution…

(l1 Æ l2 Æ …Æ ln Æ c)  → l

� Find an explanation clause e such that:

� e is not too strong: c → e

� e is strong enough: (l1 Æl2 Æ …Æ ln Æ e)  → l
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The structure of a CSP proof
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Explanation rules
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Explanation rules – example 1

parameterized

m = the value that trigerred the rule
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Explanation rules – example 1
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Explanation rules – example 2

Instantiate m with max(domain(y))
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Explanation rules – example 2
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Each constraint has its rule …
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So this is how the proof looks like…
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The grand plan for today 

� Intro: the role of SAT, CSP and proofs in verification

� SAT – how it works, and how it produces proofs

� CSP - how it works, and how it produces proofs

� Making proofs smaller
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Minimizing the core

� The proof is not unique. 

� Different proofs / different cores.

� Can we find a minimum / minimal / smaller cores/proofs? 
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Minimizing the core

� Core compression

� Smaller core [ZM03, …]

� Minimal core [DHN06, …]

� Min-core-biased search [NRS’13]

� Proof compression: 

� Exponential-time transformations [GKS’06] 

� Linear time transformations

� “Recycle pivots” [BFHSS’08], …
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Core compression (smaller core)

� A basic approach: run until reaching a fixpoint [chaff]

SAT solver

ϕ

core ==

last_core ? 

corecore

last_core = core

yes

no

initially last_core = ∅
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Remove an unmarked clause c ∈ ϕ

SAT(ϕ) ?

mark c

yes

ϕ := core

no

Initially ϕ’s clauses are unmarked
Return ϕ

Core compression (minimal core)
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Proof-compression 

linear-time transformation / “Recycle-pivots”

� Based on the following fact: 

� Every resolution proof can be made ‘regular’

� … which means that each pivot appears not more than 

once on every path.
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3 4 5 6

2 6

-1 -2 51 3 4

1 2 3 -2 4

-2 3 4 5

Proof-compression 

linear-time transformation / “Recycle-pivots”

2

1

2
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3 4 5 6

2 6

-1 -2 51 3 4

1 2 3 -2 4

{2}{-2}

{2,1}{2,-1}

{2,-1,-2} {2,-1}

-2 4

-2 3 4 5-2 4

4 6

Proof-compression 

linear-time transformation / “Recycle-pivots”

Collect “removable literals”

2

1

2

Reconstruct proof
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2 6 -2 4

4 6

Proof-compression 

linear-time transformation / “Recycle-pivots”
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� Resolution graphs are DAGs

� So, a node is on more than one path to the empty clause

3 4 5 6

2 6

-1 -2 51 3 4

1 2 3 -2 4

-2 3 4 5

Proof-compression 

linear-time transformation / “Recycle-pivots”
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� Resolution graphs are DAGs

� So, a node is on more than one path to the empty clause

2 6

-1 -2 5

1 2 3 -2 4

-2 4

-2 4

4 6

Proof-compression 

linear-time transformation / “Recycle-pivots”
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2 6

-1 -2 5

1 2 3 -2 4

-2 4

-2 4

4 6

Proof-compression 

linear-time transformation / “Recycle-pivots”
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2 6

-1 -2 5

1 2 3 -2 4

-2 4

-2 4

4 6

Does A dominate B ? 

Dominance relation 
can be found in
O(|E| log |V|)

A

B

()

Problem: need to be 
updated each time.

Proof-compression 

linear-time transformation / “Recycle-pivots”
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� Possible solution:

� Stop propagating information across nodes with more than 

one child.

3 4 5 6

2 6

-1 -2 51 3 4

1 2 3 -2 4

{2}{-2}

{2,1}{2,-1}

{2,-1,-2} {2,-1}

-2 3 4 5

Proof-compression 

linear-time transformation / “Recycle-pivots”
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� Recycle pivots with intersection

� P. Fontaine, S. Merz and B. W.Paleo. Compression of Propositional 

Resolution Proofs via Partial Regularization. In CADE’11. 

� Local transformation Framework

� R. Bruttomesso, S.F. Rollini, N. Sharygina, and A. Tsitovich. Flexible 

Interpolation with Local Proof Transformations. In ICCAD’10. 

� S.F. Rollini, R. Bruttomesso and N. Sharygina. An Efficient and Flexible 

Approach to Resolution Proof Reduction. In HVC’10. 

� Lower units

� P. Fontaine, S. Merz and B. W.Paleo. Compression of Propositional 

Resolution Proofs via Partial Regularization. In CADE’11. 

� Structural hashing

� S. Cotton. Two Techniques for Minimizing Resolution Proofs. In SAT’10. 

Proof-compression 

linear-time transformations /recent advances

All implemented in PeRIPLO by S. Rollini. Together they reduce the proof size by ~40%. 
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Summary

� SAT and CSP are not only about finding models

� They can provide proofs

� Proofs are important for 

� validation

� extracting cores

� various formal-verification techniques

� Minimizing proofs/cores is a subject for intense research.
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Questions ?


