
1 

3- Valued Abstraction - Refinement  

Sharon Shoham 

 
Academic College of Tel -Aviv Yaffo  



Å3 

Model  Checking 

An efficient procedure that receives:  

Á A finite -state model  describing a system  

Á A temporal logic formula  describing a property  

 

It returns  

yes, if the system has the property  

no + Counterexample , otherwise  

 

[EC81,QS 82]  



•4 

Model  Checking 

ÁEmerging as an industrial standard tool for 
verification of hardware  designs: Intel, 
IBM, Cadence, é 
 

ÁRecently applied successfully also for 
software  verification: SLAM (Microsoft), 
Java PathFinder  and SPIN (NASA), BLAST 
(EPFL), CBMC (Oxford),é 

 



5 

Model of a System   
Kripke structure / transition system  

a,b a 

a b,c 

c 

a,c a,b b 

Labeled by atomic 
propositions AP  
(critical section, 
variable valueé) 

 

Notation: M = ( AP,  S, s 0, R, L) 
 States  Initial 

state  
Transitions 
Ì S x S  

Labeling  
S ­2Lit  



6 

Temporal Logics  

ÅLinear  Time 
ðEvery moment has a 

unique successor 

ðInfinite sequences 
(words)  

ðLinear Time Temporal 
Logic (LTL)  

ÅBranching  Time 
ðEvery moment has several 

successors 

ðInfinite tree  

ðComputation Tree Logic 
(CTL), CTL*, m-calculus 

Express properties of event orderings in time  
 



7 

Propositional Temporal Logic  

AP ð a set of atomic propositions  
 

Temporal operators:  

Xp 

Gp 

Fp 

pUq  
 

Path quantifiers:  A for all  paths  

                             E there exists a path  



8 

LTL / CTL / CTL*  

LTL ð of the form Ay 

 y -  path formula, contains no path quantifiers  

Åinterpreted over infinite computation paths  

 

CTL ð path quantifiers and temporal operators appear 
in pairs: AG, AU, AF, AX, EG, EU, EF, EX  

Åinterpreted over infinite computation trees  

 

CTL*  - Allows any combination of temporal operators 
and path quantifiers. Includes both LTL and CTL 



9 

ACTL /  ACTL* 

The universal  fragments of the logics, with 
only universal path quantifiers  

 

ðNegation is allowed only on atomic propositions  

 



10 

Main Limitation of Model Checking  

The state explosion problem:  
Model checking is efficient w.r.t. to the state 
space of the model. Buté 

 
The number of states in the system model grows 

exponentially with  
Á the number of variables  
Á the number of components in the system  



11 

òSolutionsó to the State Explosion Problem 

Symbolic model checking:  
The model is represented symbolically  

ÅBDD-based model checking 

ÅSAT -based Bounded/ Unbounded model checking  

 

Small models replace the full, concrete model:  
ÅAbstraction  

ÅCompositional verification  

ÅPartial order reduction  

ÅSymmetry  

 



12 

Outline  

ÅBackground: 
ðModel Checking  

ðAbstraction  

ðCEX guided abstraction -refinement (CEGAR)  

Å3-Valued Abstraction Refinement (TVAR)  

ÅExample: TVAR for CTL  

ÅInvestigation of abstract models used in TVAR  
ðMonotonicity of Refinement  

ðCompleteness 

ðPrecision 

ðEfficiency  

 



13 

ÅAbstraction : removes or simplifies details 
that are irrelevant to the property under 
consideration  

 
 Can reduce the number of states  
ðfrom large  to small  
ðfrom infinite  to finite  

 

ÅRefinement  might be needed  

Abstraction - Refinement  



15 

Widely used Abstractions  

Á Localization reduction / invisible variables : each 
variable either keeps its concrete behavior or is 
fully abstracted (has free behavior)   [Kurshan94] 

Á Initially: unabstracted variables are those appearing in the  
checked property  
 
 

Á Predicate abstraction : concrete states are 
grouped together according to the set of 
predicates they satisfy    [GS97,SS 99] 

Á Initially: predicates are extracted from the programõs 
control flow and the  checked property  
 

 
 

 



16 

Abstraction Example  

 
 

x=1 
y=2 

x=0 
y=2 

x=2 
y=2 

x ¢ y ×(x ¢ y) 

x=3 
y=2 

x=4 
y=2 
é 

Concrete states  

Abstract states  



17 

Abstraction Example  

ÅAbstraction  (SA, g):  

ðFinite set of  
abstract states  SA  

ðAbstraction mapping  
g : S A Ÿ2Sc  

not necessarily disjoint sets  

 

g g 

x ¢ y ×(x ¢ y) 

é x=1 
y=2 

x=0 
y=2 

x=2 
y=2 

x=3 
y=2 

x=4 
y=2 



18 

Abstraction Example  

ÅAbstraction  (SA, g):  

ðFinite set of  
abstract states  SA  

ðAbstraction mapping  
g : S A Ÿ2Sc  

not necessarily disjoint sets  

 

ÅConcrete  Kripke  structure MC = (SC, RC, LC) 

   Abstract  model over SA: labeling, transitions  
 

Need to be conservative  

g g 

x ¢ y ×(x ¢ y) 

é x=1 
y=2 

x=0 
y=2 

x=2 
y=2 

x=3 
y=2 

x=4 
y=2 



Why Conservative?  

Goal: 

ÅModel check MA instead of MC 

ÅDeduce result over M C from result over M A 

 

What can we deduce?  

Åtrue ?  

Åfalse ?  

ÅBoth ?  

For which properties?  
 

Depends on abstract model and abstract semantics  
19 



Å20 

2- valued CounterExample - Guided 
Abstraction Refinement ( CEGAR) 

 
For ACTL*  

 

 

 

    [CGJLV00, JACM 2003 ] 



•21 

Existential Abstraction:  

every concrete transition is represented by an abstract 
transition  

If $scÍg(sa) $sõcÍg(sõa) s.t.  
(sc, sõc)ÍRC then (sa,sõa)ÍRA 

 

 
The abstract model is an over- approximation  of the 

concrete model:  
ðThe abstract model has more behaviors  
ðno concrete behavior is lost  

sõc sc 

sa 
sõa 

g g 

Abstraction preserving ACTL/ACTL*  

Formally: simulation  



Simulation Relation  

H Ì SC x S A is a simulation relation from  
MC to M A if whenever ( sc, sa) Í H: 

ÅLC(sc) É LA(sa) 

ÅIf ( sc, scõ) Í RC for some scõ, then there 
exists saõ s.t.  (sa,saõ) Í RA and (scõ, saõ) Í H 

 

If there exists a simulation relation obeying 
the initial states, then MC ¢sim MA 

Å22 



Existential Abstraction  

ÅAbstract model is also a Kripke  structure  

ÅSame semantics is used for abstract and 
concrete models  

Č Same model checking algorithms  

 

Abstract model checking result is true  or false  

(2-valued) 

 

Buté what can we deduce? 
Å23 



Å24 

Logic Preservation Theorem  
 

Theorem.  Let  MC ¢sim MA. Then: 
ÅEvery ACTL/ACTL* property true  in the 

abstract model is also true  in the concrete 
model: 

 MA |= j Ý MC |= j  
 

However, the reverse may not be valid: 

Á If  MA |  ̧j, need to check further  

ÁCheck if abstract counterexample is spurious  



Å25 

CEX Guided Abstraction Refinement  

TA is not spurious  
check spurious  
counterexample  

TA 

stop  

MA |= j 

generate  
counterexample T A 

MA |= j 

model check 

MA 

generate  initial  
abstraction  

M and jÍ ACTL/ACTL*   

   Refinement:  
based on cex 

TA 
is spurious 



Å26 

Three - Valued Abstraction Refinement 
(TVAR)  

 
for Full CTL*  

 

 

 

      [SG03,GLLS05] 



2- valued Approach is not Applicable  

ÅOver -approximation (simulation) of the 
concrete model is not sound for 
verification of existential properties:  

 MA |=  Ey does not imply MC |=  Ey  

 

Č More complex abstract models (and 
relations) are needed to ensure logic 
preservation  

Å27 



•28 

Abstract Models for CTL*  

Branching- time  temporal logics combining 
existential ( E) and universal ( A) quantifiers:   

Č two transition relations [LT 88] 

 

ðRmay: an over- approximation  

ðRmust: an under -approximation  

 

Rmay used to verify  Ay 
Rmust used to verify  Ey 

 

é and falsify  Ey 
 é and falsify  Ay 
 



Logic Preservation for CTL*  
 

If MA is an abstraction of MC then  for every 
CTL* formula j,  

         MA |= j Ý MC |= j 

         MA |  ̧j Ý MC |  ̧j  

 

ÅBut sometimes  [MA |= j ] = donõt know 
 

Č 3- Valued Semantics  
   3 possible values: True , False ,  ̂ (indefinite)  
 

 
Å29 



•30 

Refinement  

ÅRefinement is needed when result is  ̂

Traditional abstraction -refinement for universal 
properties not  applicable: 
ð Refinement needed when result is false  

ð Based on a counterexample  

 

Three - Valued Abstraction - Refinement 
(TVAR)  



Å31 

The TVAR  Methodology  

stop  

[M A |=3 j] = tt,ff   

find and analyze  
failure cause  

[M A |= 3 j] =  ̂ 

model check 

MA 

generate  initial  
abstraction  

M and jÍ CTL/CTL*   

Refinement:  

Based on failure  



•33 

Main Components  

1. Abstract Models:  
What formalism is suitable?  
How to construct an abstract model in a 
conservative way?  

2. Model  Checking:   
How to evaluate branching - time  formulas over 
abstract models based on the 3-valued semantics ? 

3. Refinement:  
How to refine the abstract model?  
 



Å34 

TVAR for CTL using  
Kripke Modal Transition Systems  

 

 

 

 [SG03 ]  



•35 

Abstract Models  

 
Kripke  Modal Transition System (KMTS)  [HJS 01]  

ÅM = (AP, S, s0, Rmust, Rmay, L)  
 

ðRmust Ì S x S : an under -approximation  

ðRmay Ì S x S : an over- approximation  

ðRmust  Ì Rmay 

For simplicity.  
In MixTS , no such requirement  



•36 

Labeling function :  
 

ÅL: S→ 2Literals  

ÅLiterals = AP ẕ {×p | pÍAP } 

ÅAt  most  one of p and ×p is in L(s).  
 

ðConcrete: exactly  one of p and ×p is in L(s).  

ðKMTS: possibly none of them is in L(s),  

meaning that the value of p in s is unknown 

 

 

Abstract Models  



•37 

3-Valued Semantics [BG99 ]  

[[lit ]] (s) = tt if lit ÍLA(s), ff if ×lit ÍLA(s),  ̂ o.w. 
   

         tt if forall  sõ, if (s, sõ) ÍRmay,  

      then [[y]] (sõ) = tt 

[[AXy]] (s) =  ff if exists  sõ s.t. (s, sõ)ÍRmust    
              and [[y]] (sõ) = ff 

          ̂ otherwise  
 

[[EXy]] (s) - dual 

 

{òall succ. satisfy yó 

òexists succ. satisfying yó 



Å38 

MC 

MA 

 
Labeling of abstract states  

g g g 

Construction of Abstract Model  

p 

p 

p 

p 
p 

¬p 

¬p 
¬p 

¬p 

¬p 

 ["scÍg(sa) lit ÍLC(sc) ]   Ú lit ÍLA(sa)  



MC 

MA 

must and may transitions:  

g g g 

 must: under 
approximation  

("$)  

Construction of Abstract Model  

 ["scÍg(sa) $scõÍg(saõ) s.t. (sc,s cõ)ÍRC]  Ú (sa,s aõ)ÍRmust 



MC 

MA 

must and may transitions:  

g g g 

 may: over 
approximation  

($$)  

Construction of Abstract Model  

 [$scÍg(sa) $scõÍg(saõ) s.t. (sc,s cõ)ÍRC] Ú (sa,s aõ)ÍRmay 



Mixed Simulation  

H Ì SC x S A is a mixed  simulation relation from 
Kripke  structure M C to KMTS M A if whenever 
(sc, sa) Í H: 
ÅLC(sc) É LA(sa) 

ÅIf ( sc, scõ) Í RC, then there is saõ s.t.  (sa,saõ) Í Rmay 
and (scõ, saõ) Í H 

ÅIf ( sa, saõ) Í Rmust, then there is scõ s.t.  (sc, scõ) Í RC 
and (scõ, saõ) Í H 

 

If there exists a mixed simulation relation 
obeying the initial states, then MC ¢mix MA 

Å41 



Logic Preservation  

Theorem .  

 Let  MC ¢mix MA. Then: 

 For every CTL* formula j,  

         MA |= j Ý MC |= j 

         MA |  ̧j Ý MC |  ̧j 

 

But if [MA |= j] = ,̂ the value in M C is unknown 

 

Å42 



Å43 

3- Valued Model 
Checking Example  

j = AXp ØEXq 

M: 

p, ×q s t p, q 



Å44 

(s, AXpØEXq) 
j = AXp ØEXq 

M: 

p, ×q s t p, q 

state of  
the model  

formula that  
we want to  

 evaluate in s 0 

MC graph  

3- Valued Model 
Checking Example  



Å45 

(s, AXpØEXq) 

(s, AXp) 

(s, p) (t, q) 

(s, EXq) 

(s, q) (t, p) 

j = AXp ØEXq 

M: 

p, ×q s t p, q 

Terminal  Terminal  Terminal  Terminal  

MC graph  

3- Valued Model 
Checking Example  



Å46 

Coloring the graph  

(s, AXpØEXq) 

(s, AXp) 

(s, p) (t, q) 

(s, EXq) 

(s, q) (t, p) 

j = AXp ØEXq 

M: 

p, ×q s t p, q 
ff  
tt  

Ṷ 

Terminal nodes :  based on states labeling  
Ø,Ù, AX, EX:  according to sons, based on semantics  

Modelõs transitions 

need to consider:  

Åmay vs. must  



Å47 

3- Valued Model Checking Results  

Ått  and ff are definite : hold in the 
concrete model as well.  
 

ÅṶ is indefinite   

 ᵼ Refinement is needed.  

 



Å48 

ÅMC 

ÅMA 

 Å done by splitting abstract states  
(as for the case of 2-values) 

Åg Åg Åg 

Refinement  



Å49 

Refinement  

ÅUses the colored MC graph  
ÅFind a failure  node nf : 

ða node colored  ̂whereas none of its sons was 
colored  ̂at the time it got colored.  
ðthe point where certainty was lost  

Åpurpose: change the  ̂color of nf . 
 

  



Å50 

Example 

(s, AXpØEXq) 

(s, AXp) 

(s, p) (t, q) 

failure  

(s, EXq) 

(s, q) (t, p) 

j = AXp ØEXq 

M: 

p, ×q s t p, q 

reason for failure:  

may-son 
- not enough to verify  

- prevents refutation  

ff  
tt  

Ṷ 



•53 

Failure Reason  

ÅFailure reason  is either:  
ðA may- edge which is not  a must-edge. 

ðA Ṷ- terminal node  

 

ÅBack in the model :  

ðEither a transition (s, sõ) Í Rmay\ Rmust: 

  Č Split s to get a must -transition or none.  



•54 

Failure Reason  

ÅFailure reason  is either:  
ðA may- edge which is not  a must-edge. 

ðA Ṷ- terminal node  

 

ÅBack in the model :  

ðEither a transition (s, sõ) Í Rmay\ Rmust: 

  Č Split s to get a must -transition or none.  



•55 

Failure Reason  

ÅFailure reason  is either:  
ðA may- edge which is not  a must-edge. 

ðA Ṷ- terminal node  

 

ÅBack in the model :  

ðEither a transition (s, sõ) Í Rmay\ Rmust: 

  Č Split s to get a must -transition or none.  

ðOr (s,lit) where lit  L(s), ¬lit  L(s) 

  Č Split s according to lit.  



•56 

Failure Reason  

ÅFailure reason  is either:  
ðA may- edge which is not  a must-edge. 

ðA Ṷ- terminal node  

 

ÅBack in the model :  

ðEither a transition (s, sõ) Í Rmay\ Rmust: 

  Č Split s to get a must -transition or none.  

ðOr (s,lit) where lit  L(s), ¬lit  L(s) 

  Č Split s according to lit.  

p 
¬p  



•57 

Split  

ÅRefinement is reduced to separating  sets 
of concrete states .  
ðdone by known techniques [CGJLV00,CGKS02] 

 

 Č Refined  abstraction mapping . 

 

ÅBuild refined  abstract model and refined  
MC- graph  accordingly.  



Å59 

Example (cont.)  

j = AXp ØEXq 

M: 

p, ×q s t p, q 

j = AXp ØEXq 

Mõ: 

p, ×q s1 t p, q 

p, ×q s2 
(s1, AXpØEXq) 

(s1, AXp) 

(s2, p) (t, q) 

(s1, EXq) 

(s2, q) (t, p) 



Å60 

(s1, AXpØEXq) 

(s1, AXp) 

(s2, p) (t, q) 

(s1, EXq) 

(s2, q) (t, p) 

ff  
tt  

Ṷ 

j = AXp ØEXq 

Mõ: 

p, ×q s1 t p, q 

p, ×q s2 

Example (cont.)  



Å61 

Incremental Abstraction -Refinement  

  

 No reason to split states for which MC 
results are definite during refinement.  
 
 

ÅAfter each iteration remember  the nodes 
colored by definite  colors.  

ÅPrune the refined MC graph in sub-nodes of 
remembered nodes.    
[ (sa, j) is a sub-node of (s aõ, jõ) if j=jõ and g(sa) gõ(saõ) ]  

ÅColor such nodes by their previous colors.  



Å62 

Example 



Å63 

Example (cont.)  

Refined MC -graph 



Å64 

Example (cont.)  



Å65 

Example (cont.)  

Refined MC -graph 

é 



67 

Are KMTSs good enough for TVAR?  

 

 

 



Investigation of Abstract Models  

ÅMonotonicity of Refinement  

ÅPrecision 

ÅCompleteness 

ÅEfficiency  

 

 

 
 

68 



(1) Monotonicity of Refinement  

Is a refined  abstract model at least as 
precise as the unrefined  one? 

 

69 



70 

Example 

P ::  

input x > 0 

pc=1: if x> 5 then x := x+ 1 else x := x+2 

pc=2: while true do  

                 if odd(x) then x := -1 else x := x+1 

 

j = EF (x Ò 0) 

            



71 

An Abstract Model M  

pc=1 

x>0 

pc=2 

x>0 

pc=2 

x¢0 

s0 

s2 s1 

 [ EF (x Ò 0) ]  (M) =   ̂  

P ::  

input x > 0 

pc=1: if x> 5 then x := x+ 1   

    else x := x+2 

pc=2: while true do  

              if odd(x) then x := -1 
 else x := x+1 



72 

pc=1 

x>0 

pc=2 

x>0 

pc=2 

x¢0 

pc=1  x>0 

odd(x)  

pc=1  x>0 

×odd(x)  

pc=2  x>0 

odd(x)  
pc=2  x>0 

×odd(x)  

pc=2 x¢0 

×odd(x)  

pc=2 x¢0 

odd(x)  

s0 

s2 s1 

s00 

s10 

s01 

s21 s20 
s11 

The abstract model M  

 A refinement  

Mõ  of  M 

P ::  

input x > 0 

pc=1: if x> 5 then x := x+ 1   

    else x := x+2 

pc=2: while true do  

              if odd(x) then x := -1 
 else x := x+1 



73 

[  EX (x > 0) ] (Mõ) =  ̂

pc=1 

x>0 

pc=2 

x>0 

pc=2 

x¢0 

pc=1  x>0 

odd(x)  

pc=1  x>0 

×odd(x)  

pc=2  x>0 

odd(x)  
pc=2  x>0 

×odd(x)  

pc=2 x¢0 

×odd(x)  

pc=2 x¢0 

odd(x)  

s0 

s2 s1 

s00 

s10 

s01 

s21 s20 
s11 

[ EX (x > 0) ] (M)  = tt  

 A refinement  

Mõ  of  M 

The abstract model M  

Mõ ¢CTL M 

P ::  

input x > 0 

pc=1: if x> 5 then x := x+ 1   

    else x := x+2 

pc=2: while true do  

              if odd(x) then x := -1 
 else x := x+1 



74 

Problem 

ÅWhen splitting states during refinement 
we may lose must transitions  
 

ÅExistential formulas that were true before 
may become indefinite !  
(also universal formulas that were false)  
 

ÅThus, the refined model is not necessarily 
more precise  
 

Č refinement is not monotonic  

"$ 



75 

 

Goal: define a refinement that adds under-
approximated must  transitions  

 
[current refinements  remove over-approximated may 

transitions ]  
 

Result: refined model will be more precise , 
i.e. more formulas will be definite ( tt  or ff ) 
in it:  

 Monotonic Refinement  
 
Notation:  Mõ ¢CTL M : Mõ is more precise than M 



76 

pc=2 x¢0 

×odd(x)  

pc=2 x¢0 

odd(x)  

pc=1 

x>0 

pc=2 

x>0 

pc=2 

x¢0 

s0 

s2 s1 

s21 

pc=1  x>0 

odd(x)  

pc=1  x>0 

×odd(x)  

pc=2  x>0 

odd(x)  
pc=2  x>0 

×odd(x)  

s00 

s10 

s01 

s20 s11 

Mõõ ¢CTL M 

Refinement Mõõ  of M, according to Godefroid et. al. 



(2) Precision  

Given a state abstraction (SA, g)  

 

ÅòHow manyó formulas can be verified or 
falsified on the abstract model?  

 

77 



78 

pc=2 x¢0 

×odd(x)  

pc=2 x¢0 

odd(x)  

pc=1 

x>0 

pc=2 

x>0 

pc=2 

x¢0 

s0 

s2 s1 

s21 

pc=1  x>0 

odd(x)  

pc=1  x>0 

×odd(x)  

pc=2  x>0 

odd(x)  
pc=2  x>0 

×odd(x)  

s00 

s10 

s01 

s20 s11 

Mõõ ¢CTL M 

[ EF (x Ò 0) ] (Mõõ)=  ̂

Refinement Mõõ  of M, according to Godefroid et. al. 



79 

Another Solution [SGõ04] 

Use hyper - transitions  as must transitions  

 

Hyper - transition  from a state s Í S is  

Å(s, A) where and A Ì S is nonempty  
 



80 

Generalized KMTS (GTS)  

M = ( S, S 0, Rmay, Rmust, L) 

 

ÅS, S0, Rmay, L  as before  

ÅRmust Ì S x 2S  

 



81 

Constructing an Abstract GTS  

Given MC, SA, and g : S A Ÿ2Sc  

 

Å(sa, A) Í Rmust only if "$$- condition holds:   
 

"sc Íg(sa) $sõaÍA $sõcÍg(sõa) :  
(sc, sõc) Í Rc 
 

sõc 

must 

sc 

sa 

g g 

A 

every state in g(sa) has a corresponding transition  



82 

Constructing an Abstract GTS  

Given MC, SA, and g : S A Ÿ2Sc  

 

Å(sa, A) Í Rmust only if "$$- condition holds:   
 

"sc Íg(sa) $sõaÍA $sõcÍg(sõa) :  
(sc, sõc) Í Rc 
 

sõc 

must 

sc 

sa 

g g 

A 

every state in g(sa) has a corresponding transition  

 

Reminder: in KMTS : 
(sa, sõa) Í Rmust only if "$- condition holds:   
        "sc Íg(sa) $sõcÍg(sõa) : ( sc, sõc) Í Rc 
 



 

 

84 

3-Valued Semantics over GTS  

[[lit ]] (s) = tt if lit ÍLA(s), ff if ×lit ÍLA(s),  ̂ o.w. 
   

         tt if forall  sõ, if (s, sõ) ÍRmay,  

      then [[y]] (sõ) = tt 

[[AXy]] (s) =  ff if exists  A Ì SA s.t. (s, A)ÍRmust   
            and [[y]] (sõ) = ff forall sõÍA 

          ̂ otherwise  
 

[[EXy]] (s) - dual 

 

{òall succ. satisfy yó 

òexists succ. satisfying yó 



85 

Must Hyper - transition ( "$$) 

s00 pc=1  x>0 

odd(x)  

s10 

pc=2  x>0 

odd(x)  

s11 

pc=2  x>0 

×odd(x)  

Every concrete state in g(s00) has a transition  

to a concrete state in either g(s10) or g(s11)  

pc=1: if x> 5 then x := x+ 1 

else x := x+2 

Pc=2: é                           



86 

Generalized KMTS M G 

MG ÒCTL Mõõ ÒCTL M   and    [ EF (x Ò 0) ]  (MG) = tt  

s20 s11 s10 

pc=2  x>0 

odd(x)  
pc=2  x>0 

×odd(x)  

pc=1  x>0 

odd(x)  

s00 pc=1  x>0 

×odd(x)  

s01 

s21 

pc=2 x¢0 

×odd(x)  

pc=2 x¢0 

odd(x)  

P ::  

input x > 0 

pc=1: if x> 5 then x := x+ 1   

    else x := x+2 

pc=2: while true do  

              if odd(x) then x := -1 
 else x := x+1 



87 

Monotonicity Theorem:  

Let MA and MõA be two abstract GTSs of M c  
such that  

 

ÅMõA is obtained from M A by splitting states  

ÅBoth M A and MõA are exact  

 

Then MõA is more precise  than M A   



88 

To complete the pictureé 

 

 

 

ÅExtension of the game -based 3-Valued 

Model Checking  and Failure Analysis  to 

GTSs 

 

 

stop  

tt , ff   

 ̂ 

model check  

MA 

generate initial  
abstraction  

M and j  

refinement  

find and analyze  
failure state  



Investigation of Abstract Models  

ÅMonotonicity of Refinement  

ÅPrecision 

ÅCompleteness 

ÅEfficiency  

 
 

89 



90 

(3) Completeness  

ÅSuppose MC |= j  

 

ÅDoes there exist  a finite  abstraction  (SA,g) 
such that [MA |= j]  = tt ?  

 



91 

Monotonicity vs. Completeness vs. 
Precision 

ÅMonotonicity of refinement :  
Given two  abstractions, where one is a split  of the 
other, is refined abstraction more precise than 
unrefined  one? 

ÅPrecision:  
How many formulas can be verified on the abstract 
model, with a given abstraction  (SA, g) ? 

ÅCompleteness:  
Does there exist  an abstraction  (SA, g)  for which we 
can verify the formula on the abstract model?  

 

 

 



Are KMTSs complete?  

ÅNo fairness constraints  

 Č incomplete for liveness properties  

 

What about Safety ? (no least fixpoint ) 

 

No [Dams & Namjoshi, 2004 ] 

But GTSs are !  [de Alfaro et al, 2004 ] 

92 



Investigation of Abstract Models  

ÅMonotonicity of Refinement  

ÅPrecision 

ÅCompleteness 

ÅEfficiency  

 
 

93 



(4) Efficiency  

Cost:  

 - Size of the abstract model w.r.t. |S A|  

 - Efficiency  of Model Checking  

 

94 



95 

Drawback of GTS  

The number of must hyper transitions might be  

exponential in the number of abstract states |S A|  

 

Optimization : 

including only (s, A) such that A is minimal 

ÅDoes not change precision of the abstract model  

 

But, might still be too large  



96 

In Practice  

ÅNot all hyper -transitions are relevant for 
specific model checking problem  
 
 
 
 
 

 
Č Need to find designated  hyper -transitions  

é é é p p p 

s0 
[[EXp]](s0)  = ? 

òexists a successor 
that satisfies pó 



97 

Alternative Approach [SG06]  

ÅCompute hyper-transitions during  Model 
Checking, by need  

 

Č Game- based Model Checking  

 



98 

Ordinary 
transitions  Our Algorithm  

ÅCompute over approximation  of concrete 
transition relation  

 (sa, sõa)ÍRA iff   

   $scÍg(sa) $sõcÍg(sõa) : ( sc, sõc) Í Rc 

  All reachable states are considered  
 

ÅConstruct MC graph  based on RA 

ÅApply bottom up coloring  



99 

During Coloring  

s1Ṳy 

s Ṳ EXy 

é s3Ṳy s2Ṳy s4Ṳy snṲy s3Ṳy s3Ṳy 
tt ff ff ff tt tt tt 

Att: all states in which the value of y is tt 

(s, Att) meets "$$-condition [ must]?    yes: [[EXy]](s0) = tt  



100 

During Coloring  

s1Ṳy 

s Ṳ EXy 

é s3Ṳy 

All may transitions reach Aff ? 

s2Ṳy s4Ṳy snṲy s3Ṳy s3Ṳy 
tt ff ff ff tt tt tt 

yes: [[EXy]](s0) = ff  

otherwise :  [[EXy]](s0) = ̂   

(s, Att) meets "$$-condition [ must]?    yes: [[EXy]](s0) = tt  

Aff: all states in which the value of y is ff 



101 

Abstract Model Checking  

ÅLoops: slight complication  

 

In the paper [SG06]:  
ÅAbstract MC for the alternation -free m-calculus  

ÅComplexity:  O(|S A| 2 x | j|)  

ÅIn particular: num of "$$ checks,  
num of hyper transitions  

 

As precise as constructing the full GTS   

 Comparable to 
the complexity 
without  hyper -

transitions  



102 

Abstraction - Refinement  

ÅIf [[j]](s0) = ̂ , apply refinement  by 
splitting abstract states, as in [SG03] 

 

ÅRefinement is monotonic : 

 refined model is more precise , i.e. more m-
calculus formulas are definite ( tt or ff) in it  

 

Č Abstraction - refinement loop  

 



103 

Summary 

We presented the TVAR framework for  
3-valued abstraction -refinement  in model 
checking:  
 

ÅProperties preserved : 
ðCEGAR: truth  of ACTL* 

ðTVAR: both  truth  and falsity of  Full CTL* 
  

ÅRefinement eliminates   
ðCEGAR: Counterexamples 

ðTVAR: indefinite results ( )̂ 



104 

Summary 

The TVAR framework   requires  

 

1. Different abstract models ( Rmust, Rmay) 

ðRmust is harder to compute, and problematic 
in terms of monotonicity , precision , 
completeness, and efficiency  

ðKMTS, GTS, HTS  

 

2. Adapted Model checking for new models:  
ð3-valued Coloring of MC -graph  

 



105 

Summary 

The TVAR framework   requires  

 

3. Refinement eliminating indefinite results  
ðIdentify  failure state and cause 

ðIncremental  abstraction -refinement (similar 
to lazy abstraction in 2-valued MC) 

 

 

Gives benefits in preciseness and in the 
properties preserved  

 


