3- Valued Abstraction - Refinement

Sharon Shoham

Academic College of Tel -Aviv Yaffo



Model Checking

An efficient procedure that receives:
A A finite -state model describing a system
A A temporal logic formula describing a property

It returns
yes, if the system has the property

no + Counterexample, otherwise

[EC81,0S 82]



Model Checking

A Emerging as an industrial standard tool for
verification of hardware designs: Intel,
| BM, Cadence, &

A Recently applied successfully also for
software verification: SLAM (Microsoft),
Java PathFinder and SPIN (NASA), BLAST

(EPFL), CBMC (Oxford), e



Model of a System

Kripke structure / transition system

a,b Ca) Labeled by atomic
’ propositions AP
Ch,c) C_a_ (critical section,

varili abl e val

©—&H @ >
(e

Notation: M =( AP, S,s0, R, L)
7
States Initial Transitions Labeling

state ] SxS S- 2Lt




emporal Logics

EXpress properties of event orderings in time

A Linear Time A Branching Time
d Every moment has a d Every moment has several
unique successor successors
d Infinite sequences d Infinite tree
(words) & Computation Tree Logic
d Linear Time Temporal (CTL), CTL*, mcalculus

Logic (LTL)



Propositional Temporal Logic

AP 0 a set of atomic propositions

Temporal operators:

Xp O O O O > 0
Gh e@e—e—e@ —@ — °
Fp o O S O 0
Ul @—e—e O 0

Path quantifiers: A for all paths
E there exists a path



LTL/CTL/CTL*

LTL O of the form Ay
y - path formula, contains no path quantifiers
A interpreted over infinite computation paths

CTL 0 path quantifiers and temporal operators appear
In pairs: AG, AU, AF, AX, EG, EU, EF, EX

A interpreted over infinite computation trees

CTL* - Allows any combination of temporal operators
and path quantifiers. Includes both LTL and CTL



ACTL/ ACTL*

The universal fragments of the logics, with
only universal path quantifiers

0 Negation is allowed only on atomic propositions



Main Limitation of Model Checking

The state explosion problem:

Model checking is efficient w.r.t. to the state
space of the model . But

The number of states in the system model grows
exponentially with

A the number of variables
A the number of components in the system

10



OSolutironsd to the St a

Symbolic model checking:

The model is represented symbolically

A BDD-based model checking

A SAT -based Bounded/ Unbounded model checking

Small models replace the full, concrete model:
A Abstraction

A Compositional verification

A Partial order reduction

A Symmetry

11



Outline

A Background: A

0 Model Checking 4

0 Abstraction

0 CEX guided abstraction -refinement (CEGAR)
A 3-Valued Abstraction Refinement (TVAR)
A Example: TVAR for CTL

A Investigation of abstract models used in TVAR
d Monotonicity of Refinement
0 Completeness
d Precision
d Efficiency

12



Abstraction - Refinement

A Abstraction : removes or simplifies details
that are irrelevant to the property under
consideration

Can reduce the number of states
o0 from large to small
d from infinite to finite

A Refinement might be needed

13



Widely used Abstractions

A Localization reduction / invisible variables : each
variable either keeps its concrete behavior or is
fully abstracted (has free behavior) [Kurshan 94]

A Initially: unabstracted variables are those appearing in the
checked property

A Predicate abstraction : concrete states are
grouped together according to the set of

predicates they satisfy [GS97,5S 99]

Alnitially: predicates are extre
control flow and the checked property

15



Abstraction Example

X ¢y x(x ¢y)

Abstract states

Concrete states

x=0 X=1 x=2 x=3 x=4 e
y=2 y=2 y=2 y=2 y=2

16



Abstraction Example
xCy x(x ¢y)
A Abstraction (Sa, 0): / s
d Finite set of d g! 7 9 N
d Abstraction mapping Z

: 7 7Sc x=0 x=1 x=2 x=3 x=4 @
g 'S A Y 2 y=2 y:2 y=2 y=2 y=2

not necessarily disjoint sets

17



Abstraction Example
xCy x(x ¢y)
A Abstraction (Sa, 0): / s
d Finite set of d g: 7 9 N
d Abstraction mapping Z

: ¢ = =1 x=2 x=3 x=4 @
1S, Y 28 =D
g S A y=2 y=2 y=2 y=2 y=2

not necessarily disjoint sets
A Concrete Kripke structure M= (Ss Re Lo)
I:> Abstract model over S,: labeling, transitions

Need to be conservative
18



Why Conservative?

Goal:
A Model check M, instead of M
A Deduce result over M . from result over M

What can we deduce?
A true ?
A false ?
A Both ?
For which properties?

Depends on abstract model and abstract semantics



2- valued CounterExample - Guided
Abstraction Refinement ( CEGAR

For ACTL*

[CGJLV00, JACM 2003 ]

0



Abstraction preserving AC

Existential Abstraction:

L/AC

L*

every concrete transition Is represented by an abstract

transition
If $s.I gs,) $s Hgs. P st
(Sc’ c)j Rcthen (Sa’ %)5RA

3

The abstract model is an over- approximation of the

concrete model:

d The abstract model has more behaviors

d no concrete behavior is lost

21



Simulation Relation

H1 S.xS,isa simulation relation from

Mcto M 4 if whenever ( s, s,) | H:

A Le(s) E La(s))

Alf(s,sOl) R-forsome sd, then th
exists s, 0s.t. (s,,S,0) Ryand (s.0s,0!1 H

If there exists a simulation relation obeying
the initial states, then M ¢, M,

2



Existential Abstraction

A Abstract model is also a Kripke structure

A Same semantics is used for abstract and
concrete models

C Same model checking algorithms

Abstract model checking resultis  true or false
(2-valued)

But € whatdeduiezeh we
23



Logic Preservation Theorem

Theorem. Let M. ¢, M,. Then:

A Every ACTL/ACTL* property true in the
abstract model i1s also true In the concrete
model:

Ma |= ] Y Mc |= ]

However, the reverse may not be valid:

Alf M, |, ]J,needto check further

A Check if abstract counterexample is spurious
fo4



CEX Guided Abstraction Refinement

! Mandji ACTL/ACTL*

generate initial
abstraction

| 1MA Mp |=]

model check
1 Mp 12 ]

Refinement: generate
based on cex counterexample T A

‘ b1,

Ta check spurious _ |
is spurious | counterexample | T IS notspurious

Jiok



Three - Valued Abstraction Refinement
(TVAR)

for Full CTL*

[SG03,GLLS05]

Jiol3



2- valued Approach is not Applicable

A Over -approximation (simulation) of the
concrete model is not sound for
verification of existential properties:

M, |= Ey doesnotimply Mg |= Ey

C More complex abstract models (and
relations) are needed to ensure logic
preservation

R7



Abstract Models for CTL*

Branching - time temporal logics combining
existential ( E) and universal ( A) quantifiers:

C two transition relations [L7ss]

0 Rmay: an over- approximation
0 Rmust: an under-approximation

Rmay used to verify Ay é a maldsify Ey
Rmust used to verify Ey € a falsify Ay

28



Logic Preservation for CTL*

If M, Is an abstraction of M, then for every
CTL* formula |,

Ma |= ] Y Mc |= ]
Mal, J Y Mc], ]

A But sometimes [M, |[=j ]=dondt kno

C 3- Valued Semantics

3 possible values: True, False , (indefinite)
9



Refinement

A Refinement is needed when resultis ~

Traditional abstraction -refinement for universal
properties not applicable:

0 Refinement needed when resultis false
0 Based on acounterexample

Three - Valued Abstraction - Refinement
(TVAR)

30



he -

"'VAR Methodology

! Mandji CTL/CTL*

generate initial
abstraction

Reflnement:

Based on failure

|

} lMA

model check

Mo [531= tff

find and analyze

failure cause

[My=3j1=7

31



Main Components

1. Abstract Models:

What formalism iIs suitable?
How to construct an abstract model in a
conservative way?

2. Model Checking:

How to evaluate branching- time formulas over
abstract models based on the 3-valued semantics ?

3. Refinement:
How to refine the abstract model?

33



TVAR for CTL using
Kripke Modal Transition Systems

[SGO03]

R34



Abstract Models

Kripke Modal Transition System (KMTS)  [HJs 01]
A M = (AP, S, s° Rmust, Rmay, L)

0 Rmust I S x S: an under-approximation

0 Rmay | S xS:anover- approximation
d Rmust | Rmay

35



Abstract Models

Labeling function :

AL: S _, 2literals
A Literals = AP z {xp| pl AP}
A At most one of p and xpisin L(s).

0 Concrete: exactly one of pand xpisin L(s).

0 KMTS: possibly none of them is in L(s),
meaning that the value of pinsis unknown

*36



3-Valued Semantics [BG99]

[IR] {s) =ttiflit | Ln(s), ffif xlit] Ly(s), * o.w.

ttif foral s, i {Rnfag, s O

then [ [ W ]sfott) |
[ AXy ] ($) K ffif exists s & s . d Rmugts, s
dadude sstufeygs | sati sfy and[ [ Y s ff)

N otherwise

[ EXy ] ($) - dual

Oceixiissct satisfuregd s ati sfying
37



Construction of Abstract Model

Labeling of abstract states

" s gs)lit T Los)] U lit] La(s,)

A8



Construction of Abstract Model

must and may transitions:

must: under
approximatio

y 9

[" sl gsa) $s.8 @s.0) s 2BDRA U (545.00)Rnuss



Construction of Abstract Model

must and may transitions: may: over

approximatio

($ %

[$SCI’ gsa) $SCGI gsaﬁ) S C’SCGT)RCQ 6 (Sa’saal’)Rmay



Mixed Simulation

HI S-.xS,isamixed simulation relation from

Kripke structure M -to KMTS M , If whenever

(S, s,) | H:

A L(s) E La(sa)

Alf( s, 58 1) R thenthereis s,8s.t. (s,8,0 ) Rmay
and (s,0s,0) H

A If (s, s,0) Rmust, then thereis s.8s.t. (s;, 5.0 ) Re
and (s,0s,0) H

If there exists a mixed simulation relation

obeying the initial states, then Mq¢_., M,
A4



Logic Preservation

Theorem.

Let M- ¢, M,. Then:

For every CTL* formula j ,
Ma |= ] Y Mc |= ]
I\/IA 5 J Y MC |5 J

Butif [M, |- J]= ", thevaluein M . is unknown

A2



3- Valued Model
Checking Example

j =AXp ZEXq

A3




3- Valued Model

M:
Checking Example s@--t

[L(& AXPZEXQ) |

j =AXp ZEXq

AN

state of
the model

formula that
we want to
evaluate in s

MC graph

Aa4



3- Valued Model

M:
Checking Example s@g_-t

s AXPZEXQ) | | =AXp ZEXq

AN

(s, AXp) (s, EXq) ]

m

Terminal Terminal Termlnal Terminal

MC graph

A5



" Coloring the graph M:
. 9 grap S@g" ‘t

s AXPZEXQ) | j =AXp ZEXq

AN

G AXp) (s, EX) ]

\

N \ <= Model 6s trar

\ \

(s,p) ((s,q) m need to consider:

A may vs. must

Terminal nodes : based on states labeling
@ U, AX, EX: according to sons, based on semantics

A6



3- Valued Model Checking Results

Att and ff are definite : hold in the
concrete model as well.

AU is indefinite
t Refinement is needed.

A7



Refinement

Adone by splitting abstract states

(as for the case of 2-values)

AV,

// /// | / \
/ '89// ﬁgl / A\
Ao

A8



Refinement

A Uses the colored MC graph
A Find a failure node n:

d a node colored * whereas none of its sons was
colored ™ at the time it got colored.
0 the point where certainty was lost

A purpose: change the " color of n, .

A9



tt
B ff

Example

s AXPZEXQ) |

AN

(s AXp)

4 FRe
(s.p). ﬂ (s.9)

(s, EXQ)
\

] = AXp ZEXq

fallure

reason for failure:
may-son
- not enough to verify
- prevents refutation

50




Faillure Reason

A Failure reason is either:
d A may- edge which is not a must-edge.
0 A U- terminal node

A Back in the model
& Either a transiton ( s, | sRinay\ Rmust:

C Split s to get a must -transition or none.

*53



Fallure Reason

A Eailure reason is eith @

d A may- edge which i
0 A U- terminal node

->

€

A Back in the model

& Either a transiton ( s, | sRénay\ Rmust:
C Split s to get a must -transition or none.




Faillure Reason

A Failure reason is either:
d A may- edge which is not a must-edge.
0 A U- terminal node

A Back in the model
& Either a transiton ( s, | sRinay\ Rmust:

C Split s to get a must -transition or none.

d Or (s,lit) where lit  L(s), =lit  L(s)
C Split s according to lit.

55



Fallure Reason

_ _ _ [ ] P
A Eailure reason is eith( == - @

d A may- edge which is q @
0 A U- terminal node @

A Back in the model

& Either a transiton ( s, | sRénay\ Rmust:
C Split s to get a must -transition or none.
d Or (s,lit) where lit  L(s), =lit  L(s)
C Split s according to lit.

56



Split

A Refinement is reduced to separating sets
of concrete states

d done by known techniques [CGJLV00,CGKS02]

C Refined abstraction mapping .

A Build refined abstract model and refined
MC- graph accordingly.

57



Example (cont.)

ﬁ% AXpZEXQ) |

AN

(s, AXp) | [ (s, EXQ) |

i = AXp ZEXQ

569




.

Example (cont.)

i = AXp ZEXQ

50




Incremental Abstraction -Refinement

No reason to split states for which MC
results are definite during refinement.

A After each iteration remember the nodes
colored by definite colors.

A Prune the refined MC graph in  sub-nodes of
remembered nodes.
[ (s, j)is a sub-node of (s ;6j,§if j 5j 6and g(s,) o¥s.0 |
A Color such nodes by their previous colors.

61



Example

62



Example (cont.)

L
Q.
©
P
O
=

[®)
)

=

[Srm—
QO
nd

563



Example (cont.)

o4



Example (cont.)

65



Are KMTSs good enough for TVAR?

67



Investigation of Abstract Models

A Monotonicity of Refinement
A Precision

A Completeness

A Efficiency

68



(1) Monotonicity of Refinement

Is a refined abstract model atleast as
precise as the unrefined one?

69



Example

P
iInput x > 0
pc=L if x>5 then x .= x+ lelse X ;.= x+2
pc=2: while true do
If odd(x) then x .= -lelse x :=x+1

j = EF QOx O

70



An Abstract Model M

P
input x > 0
pc=L: if x>5 then x :=x+ 1
else X := x+2
pc=2: while true do
if odd(x) then x :=
else x ;= x+1

-1

[EF (0= "

71




P

The abstract model M input x > 0
So @ pc=Ll if x>5 then x :=x+ 1
>
. else X ;= x+2

pc=2: while true do

S ' _ 2 - if odd(x) then x:= -1
R \ else x := x+1
\ x>0 = ~//
S pc=1 x>0
A refinement
|

~ S
M O of 1

P So1

72



P

The abstract model M nput X > 0

pc=1 i —
Sq 0 [ EX (x> 0)](M) = tt pc=1l:if x>5 then x :=x+ 1
else x := x+2

pc=2: while true do

S —% _ 2 - if odd(x) then x:= -1
S PP \ else x = x+1
S _ x>0 - - //

A refinement
M O o f

M&Lr, M

[EX(x> 0)] ( M&Y

73



>$%

Problem %

A When splitting states during refinement
we may lose must transitions

A Existential formulas that were true before
may become indefinite !
(also universal formulas that were false)

A Thus, the refined model is not necessarily
more precise

C refinementis not monotonic

74



Goal: define a refinement that adds under-
approximated must transitions

[current refinements  remove over-approximated may
transitions |

Result: refined model will be more precise ,
l.e. more formulas will be definite ( tt or ff )
In it

Monotonic Refinement

Notation: Md¢.-, M: MO i s more pr

75



~

Ref il nement MO O of M, acco

76



(2) Precision
Given a state abstraction (S,, 0

AdHow manydé formul as can
falsified on the abstract model?

77



~

Ref il nement MO O of M, acco

Moter M
[EF (0)]O ( MO G) =

78



Another Solution | smg
Use hyper - transitions as must transitions

Hyper - transition from astates | Sis
A (s, A) where and A1 S is nonempty

79



Generalized KMTS (GTS)
M=(S, S, Rmay, Rmust, L)

A'S, S,, Rmay, L as before
ARmust] Sx 2S

80



Constructing an Abstract GTS

GivenMg, S,,andg: S , Y 25¢

A (s,, A) I Rmustonlyif "/ $$condition holds:

s, gs,) $s bA $s b gs p:
(SC’ SCﬁll RC

every state in  g(s,) has a corresponding transition

81



Reminder: in KMTS:
(s, S I Rmustonlyif " $ condition holds:

) Sci gsa) $ScB gsaﬁ: (Sc’ Scﬁi Rc

C

Given M,

A (s,, A) I Rmustonlyif "/ $$condition holds:

s, gs,) $s bA $s b gs p:
(SC’ SCﬁll RC

every state in  g(s,) has a corresponding transition

82



3-Valued Semantics over GTS

[IR] {s) =ttiflit | Ln(s), ffif xlit] Ly(s), * o.w.

ttif foral s, i {Rnfag, SO

then [ [ ¥ [s D)
[ AXy ] (k) € ff if exists A1 S, s.t. (s, A) | Rmust
dradude sstufops] sati andf [ WIs¥Mf o r allAl

N otherwise

[ BXy | (§) - dual

Oceixiissct satisfuregd s ati sfying

3
y

84



Must Hyper - transition ( "/ $)

pc=l if x>5thenx =x+1
else X ;= x+2
Pc=2: e

Soo

pc=2 x>0 pc=2 x>0
odd(x) x odd(x)

Every concrete state in ~ ¢(s,,) has a transition
to a concrete state in either O(sy) or O(sq,)

85



P
inputx > 0
Generalized KMTS M G pc=L: if x> 5 then x ;= x+ 1

else x ;= x+2
pc=2: while true do
if odd(x) then x .= -1
else x ;== x+1

MgOcry M6 M and [EF ( 0)] My =tt

86



Monotonicity Theorem:

Let M, and M @ be two abstract GTSs of M
such that

A M § is obtained from M , by splitting states
A BothM, an d , adexact

T h e n, iI9dvh@ore precise than M ,

87



¢y Mand |

generate initial
abstraction

| v lMA tt , ff

_ model check
refinement
1,\
T find and analyze @

failure state

To complete the pilctutl

A Extension of the game -based 3-Valued
Model Checking and Failure Analysis to
GTSs

88



Investigation of Abstract Models

A Monotonicity of Refinement
A Precision

A Completeness

A Efficiency

89



(3) Completeness

A Suppose M. |= |

A Does there exist afinite abstraction (S4,Q)
suchthat [M, |= ] =1tt ?

90



Monotonicity vs. Completeness vs.
Precision

A Monotonicity of refinement
Giventwo abstractions, where oneisa split of the
other, Is refined abstraction more precise than
unrefined one?

A Precision:

How many formulas can be verified on the abstract
model, with a given abstraction (S,, g ?

A Completeness:

Does there exist an abstraction (S,, g for which we
can verify the formula on the abstract model?

91



Are KMTSs complete?

A No fairness constraints
C incomplete for liveness properties

What about Safety ? (no least fixpoint )

NO [Dams & Namjoshi, 2004 ]
But GTSs are! [deAlfaroetal, 2004]

92



Investigation of Abstract Models

A Monotonicity of Refinement
A Precision

A Completeness

A Efficiency

93



(4) Efficiency

Cost:

- Size of the abstract model w.r.t. |S
- Efficiency of Model Checking

Al

94



Drawback of GTS

The number of must hyper transitions might be
exponential in the number of abstract states |S Al

Optimization :
Including only (s, A) such that Ais minimal
A Does not change precision of the abstract model

But, might still be too large

95



In Practice

A Not all hyper -transitions are relevant for
specific model checking problem

[ BXp] (Bo) =7

oexli sts a
t hat sat i

@Qe@e O€ ®

C Needto find designated hyper-transitions

96



Alternative Approach [SGO06]

A Compute hyper-transitions during Model
Checking, by need

C Game based Model Checking

97



Ordinary
Our Algorithm transitions )
A Compute over approximation oncrete
transition relation
(S,, s.J R, iff

$s |- @s,) $s b @s.p: (s., sHl R,

All reachable states are considered

A Construct MC graph based on R,
A Apply bottom up coloring

98



During Coloring

|§ U EXY\

—-— - \ ~
— ~y —y

A" N > -4

‘Sluy “Szuy “33Uy “S4Uy “S3Uy “S3Uy ‘ e m
tt tt ff tt ff
Tr 1T T T f

A all states in which the value of y is tt

—-—
—’

(s, A,) meets " $&ondition [ must]? yes: [ BXy ](g,) =t
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During Coloring

|§ U EXY\

—-— - \ ~
— ~y —y

A" N > -4

‘Sluy “Szuy “33Uy “S4Uy “S3Uy “S3Uy ‘ e m
tt tt ff tt ff
T T f T

A all states in which the value of y is ff

—-—
—’

(s, A,) meets " $&ondition [ must]? yes: [ BXy ](g,) =t
All may transitions reach A ? yes: [ BXy ](d,) =ff
otherwise : [ BXy ](g,) ="

100



Abstract Model Checking

_ o /Comparable to\
A Loops: slight complication the complexity

without hyper -

In the paper [SG06]: transitions
A Abstract MC for the alternation ffee mecalculus
A Complexity: O(|S A|2 x| |)

A Imparticularar: num of "/ $ $hecks,
num of hyper transitions

As precise-as constructing theffull GI'S

101



Abstraction - Refinement

Alf [ [ (sd 3", apply refinement by
splitting abstract states, asin  [sGo3]

A Refinement is monotonic :

refined model Is more precise , I.e. more m
calculus formulas are definite ( tt or ff) in it

€ Abstractionn- refinement foop

102



Summary

We presented the TVAR framework for
3-valued abstraction -refinement in model
checking:

A Properties preserved :
8 CEGAR:truth of ACTL*
0 TVAR: both truth and falsity of Full CTL*

A Refinement eliminates
0 CEGAR:Counterexamples

& TVAR: indefinite results ()

103



Summary

The TVAR framework requires

1. Different abstract models ( Rmust, Rmay)

0 Rmust is harder to compute, and problematic
In terms of monotonicity , precision,
completeness, and efficiency

0 KMTS, GTS, HTS

2. Adapted Model checking for new models:
d 3-valued Coloring of MC -graph

104



Summary

The TVAR framework requires

3. Refinement eliminating indefinite results
0 Identify failure state and cause

0 Incremental abstraction -refinement (similar
to lazy abstraction in  2-valued MC)

Gives benefits In preciseness and in the
properties preserved

105



