
Formal Technology in the Post Silicon lab
Real-Life Application Examples

Formal Technology in the Post Silicon lab
Real-Life Application Examples

Jamil R. Mazzawi
Lawrence Loh

Jasper Design Automation

Jamil R. Mazzawi
Lawrence Loh

Jasper Design Automation

Haifa Verification Conference

- 2 - ©2008 Jasper Design Automation

Focus of This PresentationFocus of This Presentation

• Finding bugs in silicon chips
– Post-silicon production
– Functional bugs: Bugs originate in the RTL
– Reproducing bugs in RTL to root-cause them after initial

identification is done in the lab

• Not concerned with
– Electrical bugs
– Timing bugs
– Synthesis-based bugs (?)
– Manufacturing bugs
– Software bugs
– Etc…

• Finding bugs in silicon chips
– Post-silicon production
– Functional bugs: Bugs originate in the RTL
– Reproducing bugs in RTL to root-cause them after initial

identification is done in the lab

• Not concerned with
– Electrical bugs
– Timing bugs
– Synthesis-based bugs (?)
– Manufacturing bugs
– Software bugs
– Etc…

- 3 - ©2008 Jasper Design Automation

Post-Silicon Lab, Not a Place You Would Think To Use FormalPost-Silicon Lab, Not a Place You Would Think To Use Formal

- 4 - ©2008 Jasper Design Automation

Formal Can Play a Critical Role in the Post-Silicon Debug LabFormal Can Play a Critical Role in the Post-Silicon Debug Lab

- 5 - ©2008 Jasper Design Automation

OutlineOutline

• Typical scenario from the post-silicon lab

• Simple principles of using formal in post-silicon debugging

• Two real-life case studies of using JasperGold® Formal Verification
System

• Case study 1: Detecting bus protocol violation bug
– Finding “the bug” ~6 times faster than simulation did
– Verifying bug fix before going to silicon again

• Case study 2: Quickly isolating the block with a bug
– Interaction between formal team and lab team
– Two teams interacting, each using their capabilities to help the other team
– The total power of the two teams together is much greater than either

alone

• Typical scenario from the post-silicon lab

• Simple principles of using formal in post-silicon debugging

• Two real-life case studies of using JasperGold® Formal Verification
System

• Case study 1: Detecting bus protocol violation bug
– Finding “the bug” ~6 times faster than simulation did
– Verifying bug fix before going to silicon again

• Case study 2: Quickly isolating the block with a bug
– Interaction between formal team and lab team
– Two teams interacting, each using their capabilities to help the other team
– The total power of the two teams together is much greater than either

alone

- 6 - ©2008 Jasper Design Automation

Cost of Silicon BugCost of Silicon Bug

Finding bugs in model testing is
the least expensive and most
desired approach, but the cost
of a bug goes up 10× if it's
detected in component test, 10×
more if it's discovered in system
test, and 10× more if it's
discovered in the field, leading
to a failure, a recall, or damage
to a customer's reputation.”

John Bourgoin, MIPS CEO
At a DesignCon 2006 panel

Finding bugs in model testing is
the least expensive and most
desired approach, but the cost
of a bug goes up 10× if it's
detected in component test, 10×
more if it's discovered in system
test, and 10× more if it's
discovered in the field, leading
to a failure, a recall, or damage
to a customer's reputation.”

John Bourgoin, MIPS CEO
At a DesignCon 2006 panel

- 7 - ©2008 Jasper Design Automation

On-Chip Post-Silicon Debugging CapabilitiesOn-Chip Post-Silicon Debugging Capabilities

• Most chips now have some kind of on-chip debugging
capability
– Freeze chip, when certain event is identified
– On-chip logic analyzer

• Selected group of signals is mux-ed to external pins
– Save the value of certain signals, N cycles before freeze event into

some memory
– Using scan chain to scan out all the flops

• Common capability: Failure trace extraction
– Debugging team can capture a trace for number of signals a few

cycles before (and maybe after) a problem is detected
– We refer to this trace as: failure trace

• Most chips now have some kind of on-chip debugging
capability
– Freeze chip, when certain event is identified
– On-chip logic analyzer

• Selected group of signals is mux-ed to external pins
– Save the value of certain signals, N cycles before freeze event into

some memory
– Using scan chain to scan out all the flops

• Common capability: Failure trace extraction
– Debugging team can capture a trace for number of signals a few

cycles before (and maybe after) a problem is detected
– We refer to this trace as: failure trace

- 8 - ©2008 Jasper Design Automation

Typical Scenario of a Post-Silicon Bug Isolation ProcessTypical Scenario of a Post-Silicon Bug Isolation Process

• Silicon chip is misbehaving
– Hanging, stopped responding
– Dropping packets
– Violating protocols
– Producing wrong output
– Etc...

• Lab team: Extract the failing trace

• Lab team now knows that
– The chip has some illegal behavior
– But, how did it reach this state?
– The failing scenario may have taken hours (real time) to reach

• Silicon chip is misbehaving
– Hanging, stopped responding
– Dropping packets
– Violating protocols
– Producing wrong output
– Etc...

• Lab team: Extract the failing trace

• Lab team now knows that
– The chip has some illegal behavior
– But, how did it reach this state?
– The failing scenario may have taken hours (real time) to reach

- 9 - ©2008 Jasper Design Automation

Failing Scenario Identified, but Where Is the Bug?Failing Scenario Identified, but Where Is the Bug?

Block A

Wrong output
identified

Or here?

Or here?

Block B

Or here?

Block DBlock C

Is the bug
here?

Failing scenario
extracted

Or here?

Lab team:
Which signals

should we
probe?

- 10 - ©2008 Jasper Design Automation

The Dynamic-Verification Team Is Called for HelpThe Dynamic-Verification Team Is Called for Help

• Here are the last few cycles of the failing scenario
• Can you please find the root-cause of the problem?
• Can you find how we reached this state, using simulations?
• We don’t know where the bug is happening, but we know that it is causing

block D to act incorrectly
• The bug happens after 3-4 hours run in the lab, when we inject this kind of

traffic (example: only read transactions on bus X)

• Another way to say this:
– “It took us 4 hours of real-time with random traffic of this kind to hit the bug.

Let’s see how you can reproduce it when your simulation time is x1000
slower.... Ah, that’s only 4,000 hours of simulation.... But you can do it, we
know you can.... Oh, btw, you have only 1 week to find it.”

• With simulations, the verification team is, in many cases, assigned “mission
impossible”

• Here are the last few cycles of the failing scenario
• Can you please find the root-cause of the problem?
• Can you find how we reached this state, using simulations?
• We don’t know where the bug is happening, but we know that it is causing

block D to act incorrectly
• The bug happens after 3-4 hours run in the lab, when we inject this kind of

traffic (example: only read transactions on bus X)

• Another way to say this:
– “It took us 4 hours of real-time with random traffic of this kind to hit the bug.

Let’s see how you can reproduce it when your simulation time is x1000
slower.... Ah, that’s only 4,000 hours of simulation.... But you can do it, we
know you can.... Oh, btw, you have only 1 week to find it.”

• With simulations, the verification team is, in many cases, assigned “mission
impossible”

- 11 - ©2008 Jasper Design Automation

Formal Technology Is Called for HelpFormal Technology Is Called for Help

• One of the key strengths of formal is its ability to find bugs fast
– Finding CEX (failure of a property) is usually much faster than reaching

proof on the same property
– Bug hunting

• With simulation:
– We hope that the constrained-random generator will hit the input

combination that causes the failure scenario (trigger the bug)

• With formal:
– The formal engine can mathematically find this failure scenario starting

from the extracted failure trace

• One of the key strengths of formal is its ability to find bugs fast
– Finding CEX (failure of a property) is usually much faster than reaching

proof on the same property
– Bug hunting

• With simulation:
– We hope that the constrained-random generator will hit the input

combination that causes the failure scenario (trigger the bug)

• With formal:
– The formal engine can mathematically find this failure scenario starting

from the extracted failure trace

- 12 - ©2008 Jasper Design Automation

Basic Flow or ProcessBasic Flow or Process

• The following few slides outline the steps needed to find the bug
– These are fundamentally the same steps one takes in a normal formal

verification flow

• Main differences between normal and pre-silicon FV flows:
– We are looking for one specific bug, one specific scenario
– We are not looking for full proof or coverage completeness
– We just need to find the scenario that leads to the illegal behavior
– We can allow over-constraints to simplify the process

• Example: don’t allow Write transactions because the bug happens with Read
transactions only

• This allows us not to support Writes in the assertions and assumptions we
write

• The following few slides outline the steps needed to find the bug
– These are fundamentally the same steps one takes in a normal formal

verification flow

• Main differences between normal and pre-silicon FV flows:
– We are looking for one specific bug, one specific scenario
– We are not looking for full proof or coverage completeness
– We just need to find the scenario that leads to the illegal behavior
– We can allow over-constraints to simplify the process

• Example: don’t allow Write transactions because the bug happens with Read
transactions only

• This allows us not to support Writes in the assertions and assumptions we
write

- 13 - ©2008 Jasper Design Automation

Step 1: Choose the Level or Block to Work withStep 1: Choose the Level or Block to Work with

Block A

Wrong output
identifiedOr here?

Block B

Block DBlock C

Failing scenario
extracted

• Option1: Full chip• Option1: Full chip

- 14 - ©2008 Jasper Design Automation

Step 1: Choose the Level or Block to Work withStep 1: Choose the Level or Block to Work with

Wrong output
identified

Block DBlock C

Failing scenario
extracted

• Option 2: Last two blocks• Option 2: Last two blocks

- 15 - ©2008 Jasper Design Automation

Step 1: Choose the Level or Block to Work withStep 1: Choose the Level or Block to Work with

Wrong output
identified

Block D

Failing scenario
extracted

• Option 3: Single block• Option 3: Single block

- 16 - ©2008 Jasper Design Automation

Step 2: Define Your Property: not(illegal_scenario)Step 2: Define Your Property: not(illegal_scenario)

• Start from the description of the problem
– We have a trace that shows the illegal scenario
– Or we know that the problem happens when a write trans is followed by another

write trans
• All we need to do is define a property that states that:

– This scenario cannot happen

• Examples:
– If we know the problem happens when FSM_X goes from state_A to state_B, and

this is not allowed:
assert (not ((fsm_x==state_A) ##1 (fsm_x==state_B)))

– If the problem happens when some FIFO overflows, and it is not supposed to:
assert (not (fifo_x.overflow))

– If the problem happen when slave_x is responding to a read transaction:
• Define properties that ensure this slave is adhering to all the protocol rules for read

transactions

• Start from the description of the problem
– We have a trace that shows the illegal scenario
– Or we know that the problem happens when a write trans is followed by another

write trans
• All we need to do is define a property that states that:

– This scenario cannot happen

• Examples:
– If we know the problem happens when FSM_X goes from state_A to state_B, and

this is not allowed:
assert (not ((fsm_x==state_A) ##1 (fsm_x==state_B)))

– If the problem happens when some FIFO overflows, and it is not supposed to:
assert (not (fifo_x.overflow))

– If the problem happen when slave_x is responding to a read transaction:
• Define properties that ensure this slave is adhering to all the protocol rules for read

transactions

- 17 - ©2008 Jasper Design Automation

Step 3: Optional: Write Input Constraint, as NeededStep 3: Optional: Write Input Constraint, as Needed

Block A
Assertions: Not (illegal scenario)

• Input Assumptions
•Optional step: may not need
•Based on the interface spec
between Block C and Block D
•Only legal inputs can happen

•If needed: add constraints to
prevent scenarios you don’t
want to support

- 18 - ©2008 Jasper Design Automation

Case Study 1:
Memory Controller Violating Bus Protocol
Case Study 1:
Memory Controller Violating Bus Protocol

• SoC Chip, with a CPU and multiple peripherals
• Chip had problems in the market and was re-called

– It hangs in certain conditions, in the field

• Bug was identified in the post-silicon lab as...
– DDR2 memory controller is hanging and causing the bus to hang
– Bug happens with Read transactions to the DDR2 memory controller (no

problem in Write)
– Suspect that the memory controller (bus slave) is violating the bus protocol

• The DDR2 memory controller with the bug is IP from a well-known IP
vendor

• Simulation team worked for 3-4 months (with random simulation) until they
were able to root-cause the bug

• Imagine the cost of this bug
• Imagine the relationship between simulation team, Chip-Company, IP-

Vendor, and Chip-Company’s customer during this time

• SoC Chip, with a CPU and multiple peripherals
• Chip had problems in the market and was re-called

– It hangs in certain conditions, in the field

• Bug was identified in the post-silicon lab as...
– DDR2 memory controller is hanging and causing the bus to hang
– Bug happens with Read transactions to the DDR2 memory controller (no

problem in Write)
– Suspect that the memory controller (bus slave) is violating the bus protocol

• The DDR2 memory controller with the bug is IP from a well-known IP
vendor

• Simulation team worked for 3-4 months (with random simulation) until they
were able to root-cause the bug

• Imagine the cost of this bug
• Imagine the relationship between simulation team, Chip-Company, IP-

Vendor, and Chip-Company’s customer during this time

The following names used
in this presentation are
aliases to protect identity
etc…

• Chip-Company
• IP-Vendor
• ACB Bus
• XYZ Interface

- 19 - ©2008 Jasper Design Automation

Formal Is Called for HelpFormal Is Called for Help

• Formal was called to help after the fact, to see how fast it can be done
with formal

• Formal engineer was given the same information the simulation team
got (no cheating)

• The bug was found after 2.5 weeks
– A good part of this time was spent ramping up on the design and

protocols involved
– Once setup is complete and properties are written, actual run time to find

the CEX was under 1 minute
– Compared to weeks of simulations!

• Later, formal was re-run on the fixed RTL code
– Two other bugs were found

• Formal was called to help after the fact, to see how fast it can be done
with formal

• Formal engineer was given the same information the simulation team
got (no cheating)

• The bug was found after 2.5 weeks
– A good part of this time was spent ramping up on the design and

protocols involved
– Once setup is complete and properties are written, actual run time to find

the CEX was under 1 minute
– Compared to weeks of simulations!

• Later, formal was re-run on the fixed RTL code
– Two other bugs were found

- 20 - ©2008 Jasper Design Automation

System Block DiagramSystem Block Diagram

ACB
Master 0

Memory
Controller

Wrapper ACB
Bus

DDR2
Memory

ACB
Master1

ACB
Master N

ACB Slave – DDR2 Memory

Other ACB Slave/s

Built by IP-Vendor for Chip-
Company. To connect the
generic XYZ Interface controller
to ACB NEW BLOCK

XYZ Interface

Used by many of
IP-Vendor’s
customers
STABLE BLOCK

- 21 - ©2008 Jasper Design Automation

Verification Strategy: Step 1: Model the ACB ArbiterVerification Strategy: Step 1: Model the ACB Arbiter

ACB
Master 0

Memory
Controller

Wrapper ACB
Arbiter

DDR2
Memory

ACB
Master1

ACB
Master N

ACB Slave – DDR2 Memory

XYZ Interface

ACB arbiter module
• Assumptions on the

slave inputs to model
legal transaction

• Checks slave’s
output for protocol
behavior

ACB arbiter module
• Assumptions on the

slave inputs to model
legal transaction

• Checks slave’s
output for protocol
behavior

- 22 - ©2008 Jasper Design Automation

Verification Strategy: Step 2: Option A
Model the DDR2 Interface, Include Memory Controller
Verification Strategy: Step 2: Option A
Model the DDR2 Interface, Include Memory Controller

ACB
Master 0

Memory
Controller

Wrapper ACB
Arbiter

DDR2
Memory

ACB
Master1

ACB
Master N

ACB Slave – DDR2 Memory

ACB arbiter model
• Assumptions on the

slave inputs to model
legal transaction

• Checks slave’s
output for protocol
behavior

ACB arbiter model
• Assumptions on the

slave inputs to model
legal transaction

• Checks slave’s
output for protocol
behavior

DDR2 model
• Assumptions

on inputs
• Checks

outputs

DDR2 model
• Assumptions

on inputs
• Checks

outputs

- 23 - ©2008 Jasper Design Automation

Verification Strategy: Step 2: Option B
Remove the Memory Controller and Model the XYZ Interface
Verification Strategy: Step 2: Option B
Remove the Memory Controller and Model the XYZ Interface

ACB
Master 0

Memory
Controller

Wrapper ACB
Arbiter

ACB
Master1

ACB
Master N

ACB Slave – DDR2 Memory

ACB Arbiter model
• Assumptions on the

Slave inputs to
model legal
transaction

• Checks Slave’s
output for protocol
behavior

ACB Arbiter model
• Assumptions on the

Slave inputs to
model legal
transaction

• Checks Slave’s
output for protocol
behavior

XYZ model
• Assumptions on

wrapper inputs
• Sample wrapper

output to model
controller state

XYZ model
• Assumptions on

wrapper inputs
• Sample wrapper

output to model
controller state

- 24 - ©2008 Jasper Design Automation

Verification Strategy: Final DecisionsVerification Strategy: Final Decisions

• We ended up using Option B
• The memory controller is considered stable; the wrapper is new code

– The bug is probably in the wrapper code
– Avoid the complexity of the DDR2 protocol

• We focused on writing and proving properties to check compliance of the
wrapper (as a slave) with the ACB bus protocol

• Important: This is post-silicon verification, not pre-silicon verification
– Shortcuts are allowed, anything to make us find the bug faster
– Write properties only where the bug is suspected to be
– Use assumes to prevent certain scenarios from happening (like Write trans)
– Put assumes on internal signals:

assume (top.addr_decoder.legal_address == 1)

• We ended up using Option B
• The memory controller is considered stable; the wrapper is new code

– The bug is probably in the wrapper code
– Avoid the complexity of the DDR2 protocol

• We focused on writing and proving properties to check compliance of the
wrapper (as a slave) with the ACB bus protocol

• Important: This is post-silicon verification, not pre-silicon verification
– Shortcuts are allowed, anything to make us find the bug faster
– Write properties only where the bug is suspected to be
– Use assumes to prevent certain scenarios from happening (like Write trans)
– Put assumes on internal signals:

assume (top.addr_decoder.legal_address == 1)

- 25 - ©2008 Jasper Design Automation

Specification: In Plain English Specification: In Plain English

• For a transaction of size M beats, the slave needs to return
M rd_ack

• If the last rd_ack comes at Cycle N, the rd_complete
needs to be asserted at either Cycle N-1 or N

• If rd_complete is given at cycle N-1, cycle N must have a
valid beat

• Design decision: Always give rd_complete at cycle N-1
(never at N)

• For a transaction of size M beats, the slave needs to return
M rd_ack

• If the last rd_ack comes at Cycle N, the rd_complete
needs to be asserted at either Cycle N-1 or N

• If rd_complete is given at cycle N-1, cycle N must have a
valid beat

• Design decision: Always give rd_complete at cycle N-1
(never at N)

- 26 - ©2008 Jasper Design Automation

Main Assertion – Code Example: Single-Beat TransactionMain Assertion – Code Example: Single-Beat Transaction

property P_rdComp_is_one_before_last_rdAck_single_beat;

@(posedge clk) disable iff (!rst_n)

(m0_active_rd & ACB0_SI_rdComp &
m0_trans_is_single_one_beat)

|->

(

(ACB0_SI_rdDAck & (m0_trans_length == 1))

or (!ACB0_SI_rdDAck ##1 (ACB0_SI_rdDAck &

(m0_trans_length == 1)))

) ;

endproperty

property P_rdComp_is_one_before_last_rdAck_single_beat;

@(posedge clk) disable iff (!rst_n)

(m0_active_rd & ACB0_SI_rdComp &
m0_trans_is_single_one_beat)

|->

(

(ACB0_SI_rdDAck & (m0_trans_length == 1))

or (!ACB0_SI_rdDAck ##1 (ACB0_SI_rdDAck &

(m0_trans_length == 1)))

) ;

endproperty

- 27 - ©2008 Jasper Design Automation

Why the Bug Was Hard to Find with Coverage-Driven
Random Simulations
Why the Bug Was Hard to Find with Coverage-Driven
Random Simulations

Memory
Controller

Wrapper

ACB Slave – DDR2 Memory

Bug started here, very specific timing relationship
that the memory controller produced
1- Limited controllability:
It is hard to hit this combination randomly when
you are driving random traffic from the DDR2
memory side
2- No functional coverage was defined for all
timing relationships

ACB Bus Random
Generator and
checker

ACB Bus Random
Generator and
checker

DDR2
constrained-

random
generator
and
checker

DDR2
constrained-

random
generator
and
checker

- 28 - ©2008 Jasper Design Automation

Testcase 2: Formal Team Hand-in-Hand with Lab TeamTestcase 2: Formal Team Hand-in-Hand with Lab Team

• Existing customers
• Existing experience with formal
• Never used formal for post-silicon before
• Formal is called for help once the bug is identified in the lab
• Formal team worked with the lab team hand-in-hand

• Existing customers
• Existing experience with formal
• Never used formal for post-silicon before
• Formal is called for help once the bug is identified in the lab
• Formal team worked with the lab team hand-in-hand

- 29 - ©2008 Jasper Design Automation

High-Level Block DiagramHigh-Level Block Diagram

Block BBlock A Block DBlock C

On-chip logic analyzer (probe)

Wrong output
identifiedProbe is set to

monitor block D

- 30 - ©2008 Jasper Design Automation

With Formal: Write End-to-End PropertyWith Formal: Write End-to-End Property

Block B Block DBlock CBlock A

On-chip logic analyzer (probe)

End-to-end
Property B->D

ASSUME
Property
Outputs_A

• An End-to-end property was written, from Inputs of B to Outputs of D
– Block A was not relevant

• The property was written based on the illegal trace found by the lab team
• Only inputs that cause the bug are allowed (others are constrained out)

• An End-to-end property was written, from Inputs of B to Outputs of D
– Block A was not relevant

• The property was written based on the illegal trace found by the lab team
• Only inputs that cause the bug are allowed (others are constrained out)

- 31 - ©2008 Jasper Design Automation

With Formal: Write End-to-End PropertyWith Formal: Write End-to-End Property

Block B Block DBlock C

End-to-end
Property B->D

ASSUME
Property
Outputs_A

• An End-to-end property was written, from Inputs of B to Outputs of D
– Block A was not relevant

• The property was written based on the illegal trace found by the lab-team
• Only inputs that cause the bug are allowed (others are constrained out)

• An End-to-end property was written, from Inputs of B to Outputs of D
– Block A was not relevant

• The property was written based on the illegal trace found by the lab-team
• Only inputs that cause the bug are allowed (others are constrained out)

Information from lab-team
helping formal-team

narrow their scope of work

- 32 - ©2008 Jasper Design Automation

Break the End-to-End Property into 3 PropertiesBreak the End-to-End Property into 3 Properties

Block B Block DBlock C

Outputs D
Property

Outputs C
Property

(inputs D)

Outputs C
Property

(inputs D)

ASSUME
Property
Outputs_A

• The end-to-end property was broken into 3 properties• The end-to-end property was broken into 3 properties

- 33 - ©2008 Jasper Design Automation

Since Block D Is the “Suspect,” Start Proving Its PropertiesSince Block D Is the “Suspect,” Start Proving Its Properties

Block D

Outputs D
Property

ASSUME
Outputs C
(inputs D)

• Run the proof engines on the properties on Block D’s
outputs

• Property was proven
– Block D does not have the bug
– The failure trace cannot happen

• So why do we see this trace in the lab???!!!
– Maybe the input D assumptions

do not hold on outputs of C

• Run the proof engines on the properties on Block D’s
outputs

• Property was proven
– Block D does not have the bug
– The failure trace cannot happen

• So why do we see this trace in the lab???!!!
– Maybe the input D assumptions

do not hold on outputs of C 9

- 34 - ©2008 Jasper Design Automation

Block D Is Cleared, Block C Is the SuspectBlock D Is Cleared, Block C Is the Suspect

Block BBlock A Block DBlock C

On-chip logic analyzer (probe)

Wrong output
identified

• Using the exhaustive answer from formal team, the lab team moved
their focus from Block D to Block C

• Logic analyzer is now probing Block C instead

• Using the exhaustive answer from formal team, the lab team moved
their focus from Block D to Block C

• Logic analyzer is now probing Block C instead

Probe is set to
monitor block D
Probe is set to
monitor block C

9

- 35 - ©2008 Jasper Design Automation

Block D Is Cleared, Block C Is the SuspectBlock D Is Cleared, Block C Is the Suspect

Block BBlock A Block DBlock C

On-chip Logic analyzer (probe)

Wrong output
identified

• Using the exhaustive answer from formal team, the lab team moved
their focus from Block D to Block C

• Logic analyzer is now probing Block C instead

• Using the exhaustive answer from formal team, the lab team moved
their focus from Block D to Block C

• Logic analyzer is now probing Block C instead

Probe is set to
monitor block C

Information from formal
team helping lab team

focus their scope of work

9

- 36 - ©2008 Jasper Design Automation

Formal Team Proves the Properties on C’s OutputsFormal Team Proves the Properties on C’s Outputs

Block C

• Using the information from the lab team…• Using the information from the lab team…

Outputs C
Property

ASSUME
Outputs B
(inputs C)

9

- 37 - ©2008 Jasper Design Automation

Block C Is Cleared, Block D Is the “Suspect”Block C Is Cleared, Block D Is the “Suspect”

Block BBlock A Block DBlock C

On-chip Logic analyzer (probe)

Wrong output
identified

Probe is set to
monitor block C

• Lab team moves the focus to Block B, with full confidence the bug is
there

• Probe is moved to Block B
• Bug is found by the lab team when they

• Lab team moves the focus to Block B, with full confidence the bug is
there

• Probe is moved to Block B
• Bug is found by the lab team when they

Probe is set to
monitor block D

99X

- 38 - ©2008 Jasper Design Automation

SummarySummary
• Formal can play key role in the post-silicon lab

• Saves time, $$$, and reputation

• Use the power of formal for bug-hunting

• Case Study 1:
– Formal totally wins over simulations: seconds vs. weeks of run time
– Found another bug in the fixed RTL!

• Case Study 2:
– Better approach: Use formal in the lab from day 1 (once a bug is found)
– Formal team and lab team work hand-in-hand, feeding information to each other
– Use exhaustiveness of formal to rule out the existence of the bug in a given block
– Information from each team helps the other team focus their efforts

• You need Formal tool with capacity
• You need experience in formal, ahead of time
• Maybe, if formal was used in pre-silicon verification, we wouldn’t be doing post-silicon

verification ☺

• Formal can play key role in the post-silicon lab

• Saves time, $$$, and reputation

• Use the power of formal for bug-hunting

• Case Study 1:
– Formal totally wins over simulations: seconds vs. weeks of run time
– Found another bug in the fixed RTL!

• Case Study 2:
– Better approach: Use formal in the lab from day 1 (once a bug is found)
– Formal team and lab team work hand-in-hand, feeding information to each other
– Use exhaustiveness of formal to rule out the existence of the bug in a given block
– Information from each team helps the other team focus their efforts

• You need Formal tool with capacity
• You need experience in formal, ahead of time
• Maybe, if formal was used in pre-silicon verification, we wouldn’t be doing post-silicon

verification ☺

	Formal Technology in the Post Silicon lab�Real-Life Application Examples
	Focus of This Presentation
	Post-Silicon Lab, Not a Place You Would Think To Use Formal
	Formal Can Play a Critical Role in the Post-Silicon Debug Lab
	Outline
	Cost of Silicon Bug
	On-Chip Post-Silicon Debugging Capabilities
	Typical Scenario of a Post-Silicon Bug Isolation Process
	Failing Scenario Identified, but Where Is the Bug?
	The Dynamic-Verification Team Is Called for Help
	Formal Technology Is Called for Help
	Basic Flow or Process
	Step 1: Choose the Level or Block to Work with
	Step 1: Choose the Level or Block to Work with
	Step 1: Choose the Level or Block to Work with
	Step 2: Define Your Property: not(illegal_scenario)
	Step 3: Optional: Write Input Constraint, as Needed
	Case Study 1: �Memory Controller Violating Bus Protocol
	Formal Is Called for Help
	System Block Diagram
	Verification Strategy: Step 1: Model the ACB Arbiter
	Verification Strategy: Step 2: Option A�Model the DDR2 Interface, Include Memory Controller
	Verification Strategy: Step 2: Option B�Remove the Memory Controller and Model the XYZ Interface
	Verification Strategy: Final Decisions
	Specification: In Plain English
	Main Assertion – Code Example: Single-Beat Transaction
	Why the Bug Was Hard to Find with Coverage-Driven Random Simulations
	Testcase 2: Formal Team Hand-in-Hand with Lab Team
	High-Level Block Diagram
	With Formal: Write End-to-End Property
	With Formal: Write End-to-End Property
	Break the End-to-End Property into 3 Properties
	Since Block D Is the “Suspect,” Start Proving Its Properties
	Block D Is Cleared, Block C Is the Suspect
	Block D Is Cleared, Block C Is the Suspect
	Formal Team Proves the Properties on C’s Outputs
	Block C Is Cleared, Block D Is the “Suspect”
	Summary

