
HVC October 2008

MooreMoore’’s Law s Law v.v. Verification ComplexityVerification Complexity

Jason Baumgartner

Thanks for contributions: Wolfgang Roesner,
Ralf Fischer

IBM Corporation

�

Outline

What is Moore’s Law?

Verification Complexity

Does Moore’s Law hurt Verification Complexity?
No

Yes

Can we cope with this complexity?
Yes

No

Open problems: despair!!! vs hope???

�

What is Moore’s Law?
transistors per IC for

minimum cost has
increased at roughly a
factor of two per year

G. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics Magazine 1965

there is no
reason to believe
it will not remain
nearly constant
for at least 10

years

�

What Isn’t Moore’s Law?

Attributed to virtually all exponentially-growing computing metrics

� Circuit speed

� Computing power (MIPS, GFlops, …)

� Storage capacity

� Network capacity

� Pixel density

� ...

Strictly speaking, these are not part of Moore's original observation

� IC complexity for minimum cost

�

What Isn’t Moore’s Law?

Nonetheless, all refer abstractly to the same trend

� Device miniaturazation

� Reliable integration “growth”

� “Circuit and device cleverness”

We deliberately abuse notation w.r.t. “Moore's Law” in this talk

�

Design Characteristics of “Moore’s Law”

Smaller: miniaturization

� Devices and transistors

Cheaper

� Per transistor

� Not necessarily per product

Faster

� If software developers are willing :-)

90nm
65nm

45nm
32nm

�

Design Characteristics of Moore’s Law
Bigger!

� Chips, wafers, ICs,
networked systems, …

More complex!!
� More “smaller” devices crammed onto chip / IC

� Scale-up of functionality: datawidth, memory size, …

Hotter!!!
� Since bigger & faster!

125
150

300

W
af

er
 s

iz
e

(m
m

)

100

�

Design Characteristics of Moore’s Law

Comparable functionality in smaller / cheaper package?

No! Cram more into a bigger package

Harder to verify!!! ??? !?$%*#@!!

� Thankfully, “device complexity” cannot afford to be “as great as possible”

�

Longevity: for at least 10 years, indeed!

Functionally correct transistors / IC?

	

The End is Near! (Is it?)

Moore himself was one of his harshest critics

� Disappearing “circuit cleverness” 1975

� Lack of demand for VLSI 1979

• The Death of Cost Effectiveness

No exponential is forever - must hit limitations of physics?

� Can we miniaturize (and design w.r.t.) quantum particles? Hmmm…

Note trends on massive parallelization (e.g. BlueGene), 3D chips,
biological computing, quantum computing, ...

� Who knows?

� Will global warming (or out-of-control particle accelerator) finitize “forever”?

		

What is “Hardware Verification”?

Chips often designed in Hardware Description Language (HDL)

HDL taken through compile, physical design steps to fabrication

Many facets to verifying a chip

Logic verification is the primary focus of this talk

Does the HDL of the chip produce correct computations?

� E.g., the FPU generate IEEE-compliant results?

Will later touch upon correctness of post-HDL flow

	�

What is “Hardware Verification”?

May often represent verif problem using a sequential netlist

� Correctness properties may be synthesized into simple assertion checks

Netlist composed of primary inputs, combinational gates,
sequential elements (latches, RAM, …)

Sequential refers to ability to “remember” past computations

assertable?

	�

Verification Complexity
A state is a valuation to the sequential elements of the design

Exhaustive (formal) verification generally requires analysis of
reachable states

0
1
0

	�

Verification Complexity
Formal verification generally requires analysis of reachable states

� Falsification may only require exploring a subset

� Some proof techniques leverage fast analysis of a superset

• Induction: can design transition from a good state to a bad state?

	�

Verification Complexity

Explicit state enumeration is intractable

� Symbolic analysis often superior, though still capacity-gated

	�

Moore’s Law v. Verification Complexity

Components per IC doubles every ~2 years

Verification thus appears to grow exponentially more complex

� Compounded by use of today's computers to verify tomorrow's designs

Is this necessarily the case?

Let us revisit how this capacity tends to be used

� Moore's Heirlooms

	�

Moore's Heirlooms: Integration
Integration of more devices on chip

� System on a Chip: more components+functionality moved on-chip

� Caches are moving on-chip

Lowers packaging costs and power, increases speed

“Moving” components: no negative impact to verif complexity

	�

Moore's Heirlooms: Modularity
Additional execution units

� Multiple FPUs, FXUs, LSUs, ...

Additional cores

� POWER4 is 2 core; POWER7 is 8 core

No additional component verif complexity

Overall system complexity may increase

� Hardware, software, or both

� More concurrency, # interfaces

� Some aspects may be covered by higher-level
verification

	�

Moore's Heirlooms: Specialized Hardware

SW function moves to hardware

� Vector units, encryption

Diversified modularity

� Cell processor: 8 Synergistic Processing
Elements in addition to a Power processor

May not increase verif complexity

� “Only” more components to verify

Though nonetheless difficult to verify!

� Move verification burden from SW to HW?

�

Moore's Heirlooms: Increased Operand / Data Width

Operand width has grown substantially

� Mainstream (vs mainframe!) processors

Many processors have emulated 128-bit data support for decades

� SW + specialized HW atomically manages narrower computations

1971 1978 1986 2003

4
16

32

64

128

bi
ts

…

�	

Moore's Heirlooms: Increased Operand / Data Width

Does increased data width increase verification complexity?

� Sometimes “no” !!!

Data routing checks are not necessarily more complex

� Some checks may be bit-sliced; linear verification scaling

� Word / vector reasoning techniques scale well when applicable

• UCLID, SMT, uninterpreted functions

� Verification reduction techniques have been proposed to automatically
shrink widths to facilitate a broader set of algorithms

• Control / token nets, Bjesse CAV’08

��

Moore's Heirlooms: Increased Operand / Data Width

Does increased data width increase verification complexity?

� Sometimes “yes” !!!

What about correctness of computations on the operands?

� Optimized arithmetic / logical computations are not simple + = * / < >

Consider IEEE Floating Point Spec

1286432Width

1125223Significand bits

15118Exponent bits

Quadruple PrecisionDouble PrecisionSingle Precision

��

Floating point number format: S * BE

� S: Significand, e.g. 3.14159

� B: Base, here B=2

� E: Exponent, represented relative to predefined bias
• Actual exponent value = bias + E

A normalized FP number has Mantissa of form 1.?????
� Aside from zero representation

Fused multiply-add op: A*B + C for floating point numbers A,B,C
� C referred to as addend

� A*B referred to as product

Floating-Point Verification

��

Optimized FPU: 15 000 lines HDL

IEEE-compliant reference model for double precision:
500 lines HDL

..00significand addend

…00significand product

a+b

+/-

S Exp Frac

cnt leading 0’s copy and round

Leading zero’s may occur, e.g.,
1.101011

– 1.101001
= 0.000010

Final normalized IEEE result

164 bit2e_addend 2e_prod

Floating-Point Verification: Double Precision

=

��

Direct equiv check between reference, implementation
is computationally intractable

� Use case-splitting strategy!

Four distinct categories of case splits used

� Based on difference between product, addend exponent

Floating-Point Verification: Double Precision

��

��

Case split to fix product exponent

Normalization shifter is used to yield a normal result
� Depends upon # number of leading zeros of intermediate result

Define a secondary case-split on normalization shift
� Constraint defined directly on shift-amount signal (sha) of Ref-FPU

� Sha is 7-bit signal (double-precision) to cover all possible shift amounts

)(: �
�

����� cba ebiaseeC

)discharged (trivially cases remaining cover the to)106(:

amounts;shift possible 106 allfor)(:

/ ��

��

shaC

XshaC

restsha

sha

Floating-Point Verification: Double Precision

exponent addend theis and

exponent product theis)(where

c

baprodcprod

e

biaseeeee ������

��

Double precision
� ~585 total cases to check

� Each tractable using BDDs

Quad precision
� ~1244 total cases

� None are practical using BDDs

Denormal operands require additional case split on input
normalization shifter
� # Cases increases three orders of magnitudes double-to-quad

Floating-Point Verif: Double to Quad Precision

��

Moore's Heirlooms: Increased Operand / Data Width

Error Code Detection / Correction (ECC) logic becomes
substantially more complex w.r.t. data width

� Byproduct of transistor miniaturization: soft errors!

� Increasingly mandate ECC logic

� Along with increasingly elaborate ECC algos to handle more error bits

Emerging encryption HW similarly explodes in complexity w.r.t.
data width

Overall: Does increased data width increase verif complexity?

� Sometimes dramatically !?$%*#@!!

�

Moore's Heirlooms: Increased RAM Depth

Often not a substantial cause of verification complexity

� Most of the design is insensitive to this metric

Verification algorithms can often treat such arrays more
abstractly with memory consistency constraints

� Efficient Memory Model, BAT ICCAD’07, Bjesse FMCAD’08

Though with larger caches and more elaborate associativity
schemes comes increased complexity

� Sometimes the logic adjacent to memory array becomes more complex

�	

Moore's Heirlooms: Circuit and Device Cleverness

Countless tricks behind increasing MIPS and computing power

� Some of these are HUGE causes of verification complexity

First consider techniques for circuit speed

� Integration, interconnect speedup, miniaturization, datapath widening all
eliminate speed barriers

� Natural push to speed up core processing circuitry

� How is this achieved?

��

Moore's Heirlooms: Circuit Speed

Decades of synthesis research to reduce logic area, delay, …

� E.g., simple redundancy removal and rewriting

��

Moore's Heirlooms: Circuit Speed

Decades of synthesis research to reduce logic area, delay, …

� E.g., simple redundancy removal and rewriting

��

Moore's Heirlooms: Circuit Speed

Decades of synthesis research to reduce logic area, delay, …

� E.g., simple redundancy removal and rewriting

� Max clock speed ~ max combinational delay between state elements

��

Moore's Heirlooms: Circuit Speed

Decades of synthesis research to reduce logic area, delay, …

� Redundancy introduction may also speed up circuit

��

Moore's Heirlooms: Circuit Speed

Retiming may be used to enable higher circuit speed

�Max clock speed ~ max combinational delay between state elements

��

Moore's Heirlooms: Circuit Speed

Pipelining (+retiming) may be used to break lengthy computations

��

Moore's Heirlooms: Circuit Speed

Multi-phase latching/clocking better distributes propagation delays

� Convert edge-sensitive to level-sensitive state elements; retime

��

Moore's Heirlooms: Circuit Speed

Do these techniques necessarily hurt verification complexity?

� Some may, others not

Luckily, many are reversible by verification-helping transforms

�

Moore's Heirlooms: Circuit Speed

Logic minimization techniques often help verification

� Though word-level techniques may suffer

� Optimizations often done at bit-level

Indeed, often desirable to leverage such minimization techniques
explicitly to enhance verification

� Minimize suboptimally synthesized designs for enhanced verification

� Exploit optimization potential created by testbench

� A powerful synergy between synthesis and verification

�	

Moore's Heirlooms: Circuit Speed
Redundancy introduction often hurts verification

� More state elements with high correlation, more logic to reason about

• Naive BDD, SAT algorithms may become highly inefficient
• Induction becomes less effective with correlated state element bloat

May be reversed through redundancy removal

��

Moore's Heirlooms: Circuit Speed
Min-period retiming often hurts verification

� Often increases state element count, correlation

� Similar complexities as redundancy introduction

May be reversed through min-area retiming

��

Moore's Heirlooms: Circuit Speed
Multi-phase latching often hurts verification

� Increase in state element count, correlation; increase in diameter

May be reversed through phase abstraction

� Unfold next-state functions modulo 2

��

Moore's Heirlooms: Circuit Speed
Pipelining often hurts verification

� Increase in state element count; increase in diameter

May be reversed through peripheral retiming

� And state-folding abstraction (like phase abstraction)

��

Moore's Heirlooms: Circuit Speed

Overall message: correct-by-construction synthesis transforms
can often be reversed to avoid significant verification penalty

� Will be revisited later in context of “equivalence checking”

Such transforms often help verification in themslves

� ABC (UC Berkeley) won the 2008 HWMCC largely due to such transforms

� SixthSense (IBM) uses such a transformation-based verification paradigm

��

Moore's Heirlooms: Circuit Speed

Can all circuit speedups be reversed to avoid verif complexity?

� Unfortunately (and obviously), no!

E.g., pipelining is often accompanied by bypass / stall circuitry

� Only “correct” under specific assumptions / handshaking with adjacent logic

Entails significant design complexity

� Cannot generically be reversed without expensive global reasoning

��

Moore's Heirlooms: Design Cleverness

Many techniques critical to preserving Moore’s Law momentum

� Yet very complex for verification

� Difficult to automate or generically “reverse”

Superscalar + out-of-order execution

Prefetching

Speculative execution

Reconfigurable hardware

Holistic design

� The simultaneous optimization of:

• materials, circuits, cores, chips, system architecture, software, …

��

Moore's Heirlooms: Design Cleverness

Design innovation has become key to performance gains

IBM Transistor Performance Improvement

0

20

40

60

80

100

C
M

O
S

5X

C
M

O
S

6X

C
M

O
S

7S
-S

O
I

C
M

O
S

8S
2

C
M

O
S

9S

C
M

O
S

10
S

C
M

O
S

11
S

R
el

at
iv

e
%

 Im
pr

ov
em

en
t

Gain by Traditional Scaling Gain by Innovation

65
 n

m

90
 n

m

13
0

nm

18
0

nm

35
0

nm

25
0

nm

50
0

nm

��

Must the Verif Engineer suffer Moore's Prodigy?

Discussed circuit / design tricks which keep Moore's Law moving

� Impact on verification

� Ways to attempt to cope

For HDL verification, why are (some of) these even pertinent??

� Does the HDL need to reflect circuit optimizations?

Let us briefly discuss path from HDL to fabrication

�

Gate-level netlist

HDL Design

valout <=
(A and NOT B) or
(NOT A and B);

Transistor-level schematic

Layout

equiv checking

LVS

CompilationSynthesisLayout matches
schematic

„trusted“

From HDL to Fabrication

�	

Must the Verif Engineer suffer Moore's Prodigy?

Logic synthesis includes numerous optimizations to improve
schematic quality

� Technology-independent optimizations

� Technology-dependent optimizations

� Technology mapping

Why not use a higher-level HDL as basis of verification?

� Leave the ugly circuit optimizations to synthesis and equiv checking!!!

��

Use Higher-level HDL Basis for Verification?

+ Easier to design

+ Easier to verify
� Simpler; amenable to word-level techniques

+ Likely to be less buggy
� Bugs / lines of HDL roughly constant across design generations

- Any drawbacks??

Synthesis to
Layout

Verification

HDL Push
complexity

here?

Avoid
compexity

here?

��

Combinational Equivalence Checking (CEC)

Very well-established technology

� ~Every chip fabricated today leverages this technology

Requires 1:1 state elt mapping between Pre / Post Synthesis models

� Does not truly analyze sequential behavior of the design

� Validate next-state functions, outputs with respect to cutpoints

R2

R1

Logic
2

{x0, x1, …}
{0, 0, …}?

Logic
1

Logic
1

Logic
2

R2

R1

Logic
2

x 0?

Logic
1

Logic
1

Logic
2

S

0?

��

Combinational Equivalence Checking (CEC)

Combinational optimizations easily pushed into synthesis flow

� No need to hand-tune HDL for combinational optimization

� (As long as synthesis is powerful enough)

Though not applicable for sequential optimizations

� Retiming, pipelining, multi-phase latching, clock gating, sequential redundancy
elimination/introduction, ...

� Many CEC tools have (very) limited support for some of these

��

Sequential Equivalence Checking (SEC)

Is there a technology for equiv checking sequential optimizations?

� Of course! SEC has been proposed 16 years ago

� Only beginning to see industrial application

Analyzes true sequential I/O behavior
� Supports arbitrary functionality-preserving optimizations

With this generality comes computational complexity

R2

R1

Logi
c

{x0, x1, …} {0, 0, …}?

Logic
1

Logic
1

Logic
2

��

Sequential Equivalence Checking (SEC)

Can we push sequential optimizations into synthesis flow?

Due to SEC, in theory the answer is “yes”

If synthesis is powerful enough, in practice the answer is “yes”

� (Or is it?)

��

Sequential Equivalence Checking (SEC)

Can we push sequential optimizations into synthesis flow?

� Optimal synthesis is as computationally expensive as verification

• Holistic design: synthesis alone is not yet nearly sophisticated enough
• Many global optimizations require pseudo-manual “leap of faith” to perform

at component level, clever methodology to validate

� SEC is also computationally expensive!

• Sequential reasoning over two designs
� “Synthesis history”-aware approaches are promising to flatten this concern

• Brayton’s FMCAD’07 keynote, Brayton/Mishchenko FMCAD’08

Post-silicon analysis is an open challenge

��

Post-Silicon Analysis

Various pervasive logic in chip aside from core functionality

E.g., scan chains enable reading the contents of a chip

Critical to debug silicon failures

� Also used for purposes such as initialization, self-test, ...

��

Post-Silicon Analysis

If synthesis moves the state elements, what exactly will be scanned?

� Sequential optimizations must be done before scan insertion (else ineffective)

� Need to remap scanned values to state elements familiar to the designer

Can mapping be done through sim + SAT using “synthesis history”?

� May entail additional constraints on synthesis; de Paula FMCAD’08, Hunt

What about trace/debug buses, which monitor the chip real-time?

� Cannot algorithmically post-process that trace!

What about Engineering Change Orders?

� Last-minute changes made directly to post-synthesis design

�

Post-Silicon Analysis

If we can reconcile pervasive design w.r.t. sequential synthesis

We still need to verify the pervasive logic

1) Verify that primary functionality is unaltered through this injection

� Easy SEC-style task, constraining to functional analysis

� Though now synthesis does conditionally alter behavior!

2) Need to verify that pervasive logic works properly!

� Often more critical than main functionality; chip rendered useless otherwise

What if not correct (or inadequate): how debugged?

� Does the designer need to learn post-synthesis design ??

� Somewhat defeats the purpose !!!

�	

Coping with Moore's Heirlooms
How can verification cope with increased design complexity?

� A good methodology is often key overcoming technology shortcomings

1) Abstraction?

� Maybe, though intrinsic complexity need to be modeled+verified somewhere

• Leaky abstractions have their limits!

��

Coping with Moore's Heirlooms
Leaky abstractions have their limits

Push for holistic design makes these limits fundamental

May seem crazy, though a cost-effective path to high-end systems

� Suppressing design detail too deeply risks catastrophe

• Failure to meet timing / performance / power / reliability goals
• Lost time to market
• Product failure

��

Moore's Heirlooms: Circuit Speed
BlueGene/L System

2.8/5.6 GF/s
4 MB

2 processors

2 chips, 1x2x1

5.6/11.2 GF/s
1.0 GB

(32 chips 4x4x2)
16 compute, 0-2 IO cards

90/180 GF/s
16 GB

32 Node Cards

2.8/5.6 TF/s
512 GB

64 Racks, 64x32x32

180/360 TF/s
32 TB

����

����	

��
	����

��
 ���	����

����

��

Coping with Moore's Heirlooms
Leaky abstractions have their limits

Though abstraction clearly has a substantial role in verification

� May enable a hierarchical verification process

� Protocol verification � HDL proof obligations

� Unoptimized design verification � optimized design proof obligations

Sometimes requires decomposition of verification process

� E.g. functionality vs pervasive vs timing vs power

� Much harder to decompose design process in this manner, unfortunately

Manually maintaining abstractions is expensive

� Higher-level HDL, automated optimizations are “free abstractions”

��

POWER5 Chip
� Dual pSeries CPU
� SMT core (2 virtual procs/core)
� 64 bit PowerPC
� 276 million transistors
� 8-way superscalar
� Split L1 Cache (64k I & 32k D) per core
� 1.92MB shared L2 Cache >2.0 GHz
� Size: 389 sq mm
� 2313 signal I/Os

� >>1,000,000 Lines HDL
�How big would its abstractions be?

POWER architecture:
� Symmetric multithreading
� Out-of-order dispatch and execution
� Various address translation modes
� Virtualization support
� Weakly ordered memory coherency

��

Coping with Moore's Heirlooms
How can verification attempt to cope with increased design
complexity?

2) Compositional reasoning

� Isolate complex logic as precisely as possible for dedicated verification

� When verifying adjacent logic (or higher-level model), abstractly model
these complex components

� Assume-guarantee reasoning is sound and complete

• Substantial work in automating this process
• Still largely manual for realistic designs

��

��

��

��

Coping with Moore's Heirlooms

Compositional verification is often manually intensive

� Unless design is well-partitioned with well-defined interfaces

For highest performance, global optimization is often performed

� Subtle signal / timing relations are exploited between blocks

� Intricate functionality decentralized

Optimization to the point that designs almost don't work properly

Overall: Even clever methodologies become cost-ineffective
to cope with technology shortcomings
� In cases need to resort to incomplete techniques; risk verification gaps

��

Example: Power Saving Logic

Higher speed, increased density � need for power reduction!

Karen already spoke about power-gating logic

� Reduce power consumption by disabling voltage to inactive components

Methodologically can cope with this complexity
1) (Compositionally) verify that it does not meaningfully alter functionality

2) Disable power-gating logic for ease of functional verification

• A simple “abstraction”
3) Also need to verify that it works as intended!

Decompose and abstract

��

Asynchronous issues arise due to clock domain decoupling

� Even if running at identical frequencies

Metastability may propagate if not properly guarded against

Communication channels may suffer sequential delays

Synchronization logic used to protect design from these dangers

� Another set of verif tasks to ensure that this logic works properly

“Abstract design” attained by not injecting metastability, delays

� Though still includes the complexity of the synchronization logic

� Manual abstraction / higher-level design may be needed

Example: Power Saving Logic

�

Conclusion

Does Moore’s Law hurt the verification community?
Yes!

Though not always!

Many open problems in design + verification
HW verification is not a solved problem

Old open problems:
Improve bit-level verification algorithms !

Improve bit-level synthesis algorithms !

Improve equivalence checking techniques !

�	

Conclusion

Newer open problems
Improve higher-level verification algorithms !!

Improve high-level synthesis techniques !!

Improve higher-level equivalence checking techniques !!

Newest open problems
Improve design+verification methodologies w/ focus on holistic design !!!

Address post-Si issues through sequential synthesis !!!

“Someday Moore’s Law will work for, not against, the
verification community” Allen Emerson

Requires substantial innovation! Help achieve this goal !!!!

