Delayed Nondeterminism in Model Checking Embedded Systems Assembly Code

<u>Thomas Noll</u>¹ Bastian Schlich²

¹Software Modelling and Verification Group ²Software for Embedded Systems RWTH Aachen University noll@cs.rwth-aachen.de

Haifa Verification Conference, October 25, 2007

- Most microcontroller software written in C
- Many model checkers accept (ANSI) C programs: BLAST, CBMC, MAGIC, ...
- Often restricted support of C constructs:
 - no expressions with side effects
 - no recursion
 - only integer variables
 - ...
- Many microcontroller features not considered in ANSI C:
 - direct hardware access (registers, ...)
 - embedded assembly code
 - interrupts
 - ...

Case studies from industrial applications contain errors which

- passed all tests and reviews
- are only observable on assembly level
- caused by forgotten interrupt enabling/disabling, reentrance problems, ...

Base model checking on assembly code

- Most microcontroller software written in C
- Many model checkers accept (ANSI) C programs: BLAST, CBMC, MAGIC, ...
- Often restricted support of C constructs:
 - no expressions with side effects
 - no recursion
 - only integer variables
 - ...
 - Many microcontroller features not considered in ANSI C:
 - direct hardware access (registers, ...)
 - embedded assembly code
 - interrupts
 -

Case studies from industrial applications contain errors which

- passed all tests and reviews
- are only observable on assembly level
- caused by forgotten interrupt enabling/disabling, reentrance problems, ...

Base model checking on assembly code

- Most microcontroller software written in C
- Many model checkers accept (ANSI) C programs: BLAST, CBMC, MAGIC, ...
- Often restricted support of C constructs:
 - no expressions with side effects
 - no recursion
 - only integer variables
 - ...
- Many microcontroller features not considered in ANSI C:
 - direct hardware access (registers, ...)
 - embedded assembly code
 - interrupts
 - ...
- Case studies from industrial applications contain errors which
 - passed all tests and reviews
 - are only observable on assembly level
 - caused by forgotten interrupt enabling/disabling, reentrance problems, ...

Base model checking on assembly code

- Most microcontroller software written in C
- Many model checkers accept (ANSI) C programs: BLAST, CBMC, MAGIC, ...
- Often restricted support of C constructs:
 - no expressions with side effects
 - no recursion
 - only integer variables
 - ...
- Many microcontroller features not considered in ANSI C:
 - direct hardware access (registers, ...)
 - embedded assembly code
 - interrupts
 - ...
- Case studies from industrial applications contain errors which
 - passed all tests and reviews
 - are only observable on assembly level
 - caused by forgotten interrupt enabling/disabling, reentrance problems, ...
- Base model checking on assembly code

```
int main (void) {
  init();// call initialization
  sei();
  while(1) {
    inputs = PINA & 0x0F;
    cli();
    if (direction < 5) {
      if (inputs & (1 << 1)) {// down
        if (direction = 2 \mid \mid direction = 3) {
           TCCR1B = 0x00;
           TIFR = 0xFF;
           TCNT1 = 0 \times 00;
           TIMSK = (1 < < OCIE1A);
           TCCR1B = 0x05;
           direction = 1;
         }
```



```
int main (void) {
  init();
 __asm___volatile__ ("sei" ::);
 while(1) {
    inputs = (*(volatile uint8_t *)((0x19) + 0x20)) \& 0x0F;
    asm volatile ("cli" ::);
    if (direction < 5) {
      if (inputs & (1 << 1)) {
        if (direction = 2 \mid \mid direction = 3) {
          (*(volatile uint8_t *)((0x2E) + 0x20)) = 0x00;
          (*(volatile uint8_t *)((0x38) + 0x20)) = 0xFF;
          (*(volatile uint16 t *)((0x2C) + 0x20)) = 0x00;
          (*(volatile uint8 t *)((0x39) + 0x20)) = (1 << 4);
          (*(volatile uint8 t *)((0x2E) + 0x20)) = 0x05;
          direction = 1;
        }
```


Pros and Cons of Using Assembly Code

Advantages:

- Errors of all development stages detectable:
 - (C) programming errors
 - compiler errors
 - errors invisible in the C code (reentrance problems, ...)
 - errors in handling the hardware (interrupts, ...)
- Instructions (relatively) easy to handle
- Clean and well documented semantics
- Implementation close to actual execution

Disadvantages:

- Hardware dependency
 - \implies compiler-generating approach
- Bigger state spaces (finer granularity)
 - \implies abstraction techniques

Pros and Cons of Using Assembly Code

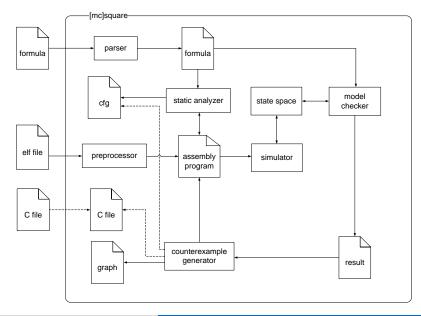
Advantages:

- Errors of all development stages detectable:
 - (C) programming errors
 - compiler errors
 - errors invisible in the C code (reentrance problems, ...)
 - errors in handling the hardware (interrupts, ...)
- Instructions (relatively) easy to handle
- Clean and well documented semantics
- Implementation close to actual execution

Disadvantages:

- Hardware dependency
 - \implies compiler-generating approach
- Bigger state spaces (finer granularity)
 - \implies abstraction techniques

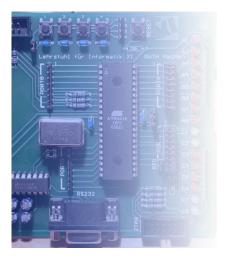
The [mc]square Model Checker



The ATMEL ATmega16 Microcontroller

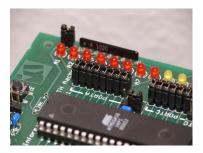
- 8-bit microcontroller
- 16 KB flash memory
- 1KByte internal SRAM
- 512 bytes EEPROM
- 3 timer/counter units
- 4 I/O Ports 8-bit
- 20 vectorized interrupts

Sources of Nondeterminism



- I/O ports
- Timer
- SPI
- TWI
- USART
- ...

I/O Ports

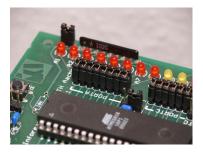


- Basic means to monitor and control external hardware
- Each 8 I/O pins (byte access)
- Bidirectional

Monitoring, access and control of I/O ports via three special registers for each port:

- Data Direction Register (DDR): specifies input (= 0) or output (= 1) property of corresponding pin
- Port Register (PORT): specifies values of output pins
- Port Input Register (PIN): contains values of input pins (read-only)

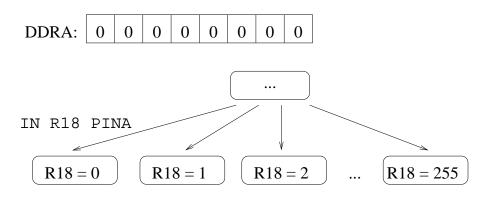
I/O Ports



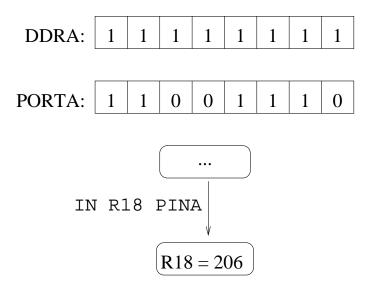
- Basic means to monitor and control external hardware
- Each 8 I/O pins (byte access)
- Bidirectional

Monitoring, access and control of I/O ports via three special registers for each port:

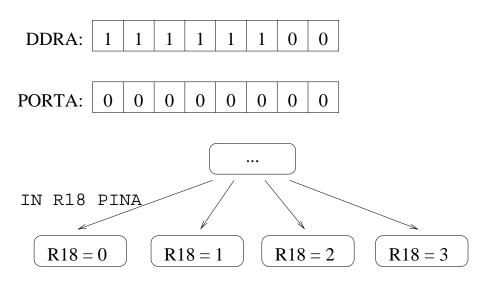
- Data Direction Register (DDR): specifies input (= 0) or output (= 1) property of corresponding pin
- Port Register (PORT): specifies values of output pins
- Port Input Register (PIN): contains values of input pins (read-only)



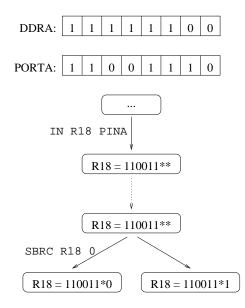
Impact on State Space II



Impact on State Space III



Delayed Nondeterminism



The Formal Model: State Space

- Bits: $\mathbb{B} := \{0, 1\}$
- Bytes: $\mathbb{C} := \mathbb{B}^8$
- Memory addresses: $A := \mathbb{C}^m$ (here: m = 2)
- Nondeterministic bit value: *
- $\mathbb{B}_* := \mathbb{B} \cup \{*\}, \mathbb{C}_* := \mathbb{B}^8_*$
- Deterministic addresses D ⊆ A (certain registers, variables in formula, ...)
- Memory states: $V := \{v \mid v : A \to \mathbb{C}_*\}$ where $v(a) \in \mathbb{C}$ for every $a \in D$
- Control locations: Q (here: program counter)
- (System) states: $S := Q \times V$

- run environment handler g₁; ...; g_k
 (introduces nondeterministic values where necessary),
- if necessary, apply interrupt dispatcher e₁: q₁ > ... > e_l: q_l
 (reaction to extraordinary events such as interrupts); otherwise
- apply instruction handler q : h₁ : q'₁ > ... > h_m : q'_m for current location q ∈ Q (normal execution of machine instructions)

Here each g_i , h_i is a guarded assignment of the form

$$e_0 \rightarrow x_1 := e_1, \ldots, x_n := e_n$$

 $(e_j \text{ value expressions}, x_j \text{ address expressions})$

- run environment handler g₁; ...; g_k
 (introduces nondeterministic values where necessary),
- if necessary, apply interrupt dispatcher $e_1 : q_1 > ... > e_l : q_l$ (reaction to extraordinary events such as interrupts) otherwise

apply instruction handler q : h₁ : q'₁ > ... > h_m : q'_m for current location q ∈ Q

 (normal execution of machine instructions)

Here each g_i , h_i is a guarded assignment of the form

$$e_0 \rightarrow x_1 := e_1, \ldots, x_n := e_n$$

 $(e_j \text{ value expressions}, x_j \text{ address expressions})$

- run environment handler g₁; ...; g_k
 (introduces nondeterministic values where necessary),
- if necessary, apply interrupt dispatcher $e_1 : q_1 > ... > e_l : q_l$ (reaction to extraordinary events such as interrupts); otherwise
- apply instruction handler q : h₁ : q'₁ > ... > h_m : q'_m for current location q ∈ Q (normal execution of machine instructions)

Here each g_i , h_i is a guarded assignment of the form

 $e_0 \rightarrow x_1 := e_1, \ldots, x_n := e_n$

 $(e_j \text{ value expressions}, x_j \text{ address expressions})$

- run environment handler g₁; ...; g_k
 (introduces nondeterministic values where necessary),
- if necessary, apply interrupt dispatcher $e_1 : q_1 > ... > e_l : q_l$ (reaction to extraordinary events such as interrupts); otherwise
- apply instruction handler q : h₁ : q'₁ > ... > h_m : q'_m for current location q ∈ Q (normal execution of machine instructions)

Here each g_i , h_i is a guarded assignment of the form

$$e_0 \rightarrow x_1 := e_1, \ldots, x_n := e_n$$

(e_j value expressions, x_j address expressions)

 $\begin{aligned} & \text{TCCR0}[\text{CS02}] = 1 \lor \text{TCCR0}[\text{CS01}] = 1 \lor \text{TCCR0}[\text{CS00}] = 1 \\ & \rightarrow \text{TIFR}[\text{TOV0}] := nd(\text{TIFR}[\text{TOV0}]); \\ & \text{DDRB}[\text{DDB2}] = 0 \rightarrow \text{GIFR}[\text{INTF2}] := nd(\text{GIFR}[\text{INTF2}]); \ldots \end{aligned}$

- Timer overflow interrupt possible if timer activated
- External interrupt possible if input enabled
- Here: nd(*) := *, nd(0) := *, and nd(1) := 1

 $TCCR0[CS02] = 1 \lor TCCR0[CS01] = 1 \lor TCCR0[CS00] = 1$ $\rightarrow TIFR[TOV0] := nd(TIFR[TOV0]);$ $DDRB[DDB2] = 0 \rightarrow GIFR[INTF2] := nd(GIFR[INTF2]); \dots$

- Timer overflow interrupt possible if timer activated
- External interrupt possible if input enabled
- Here: nd(*) := *, nd(0) := *, and nd(1) := 1

$\begin{array}{l} \texttt{SREG[I]} = 1 \land \texttt{TIMSK[TOIE0]} = 1 \land \texttt{TIFR[TOV0]} = 1:18 > \\ \texttt{SREG[I]} = 1 \land \texttt{GICR[INT2]} = 1 \land \texttt{GIFR[INTF2]} = 1:36 > \dots \end{array}$

• Timer interrupt raised if

- interrupts are globally enabled and
- timer interrupt not masked and
- timer overflow has occurred
- Effect: jump to interrupt handler at address 18

$$\begin{split} & \texttt{SREG}[\texttt{I}] = 1 \land \texttt{TIMSK}[\texttt{TOIE0}] = 1 \land \texttt{TIFR}[\texttt{TOV0}] = 1 : 18 \\ & \texttt{SREG}[\texttt{I}] = 1 \land \texttt{GICR}[\texttt{INT2}] = 1 \land \texttt{GIFR}[\texttt{INTF2}] = 1 : 36 > \dots \end{split}$$

• Timer interrupt raised if

- interrupts are globally enabled and
- timer interrupt not masked and
- timer overflow has occurred
- Effect: jump to interrupt handler at address 18

$$\begin{split} &\texttt{SREG}[\texttt{I}] = 1 \land \texttt{TIMSK}[\texttt{TOIE0}] = 1 \land \texttt{TIFR}[\texttt{TOV0}] = 1 : 18 > \\ &\texttt{SREG}[\texttt{I}] = 1 \land \texttt{GICR}[\texttt{INT2}] = 1 \land \texttt{GIFR}[\texttt{INTF2}] = 1 : 36 > \dots \end{split}$$

• Timer interrupt raised if

- interrupts are globally enabled and
- timer interrupt not masked and
- timer overflow has occurred

• Effect: jump to interrupt handler at address 18

$$\begin{split} & \texttt{SREG}[\texttt{I}] = 1 \land \texttt{TIMSK}[\texttt{TOIE0}] = 1 \land \texttt{TIFR}[\texttt{TOV0}] = 1: 18 \\ & \texttt{SREG}[\texttt{I}] = 1 \land \texttt{GICR}[\texttt{INT2}] = 1 \land \texttt{GIFR}[\texttt{INTF2}] = 1: 36 > \dots \end{split}$$

• Timer interrupt raised if

- interrupts are globally enabled and
- timer interrupt not masked and
- timer overflow has occurred
- Effect: jump to interrupt handler at address 18

Example: Adding Instruction

ADD Ri, Rj at address q:

 $q: \mathbf{R}i := \mathbf{R}i + \mathbf{R}j, \mathbf{SREG}[\mathbf{Z}] := (\mathbf{R}i + \mathbf{R}j = 0), \mathbf{SREG}[\mathbf{C}] := \dots, \dots : q+2$

• Adds contents of registers Ri and Rj and stores result in Ri

• Sets flags in status register SREG:

• ...

• $.+.: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$

• $. = 0 : \mathbb{C} \to \mathbb{B}$

Example: Adding Instruction

ADD Ri, Rj at address q:

 $q: Ri := Ri + Rj, SREG[Z] := (Ri + Rj = 0), SREG[C] := \dots, \dots : q+2$

- Adds contents of registers Ri and Rj and stores result in Ri
- Sets flags in status register SREG:
 - zero flag Z (= 0)
 - carry flag C (= 1)
 - ...
- $.+.: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$
- $. = 0 : \mathbb{C} \to \mathbb{B}$

IN Ri, A at address q:

 $q: Ri := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$

- Copies contents of registers PORTA/PINA according to mask DDRA
- $. \land . : \mathbb{C} \times \mathbb{C}_* \to \mathbb{C}_*$
- $. \lor . : \mathbb{C}_* \times \mathbb{C}_* \to \mathbb{C}_*$
- \neg .: $\mathbb{C} \to \mathbb{C}$

SBRC Ri, b at address q:

$$q: \operatorname{R} i[b] = 0 \rightarrow : q+3 >$$

 $\operatorname{R} i[b] = 1 \rightarrow : q+2$

• Branches control according to bth bit in register Ri

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still v(a) ∈ C_{*} \ C possible for specific addresses a ∈ A \ D (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $\llbracket e_0 \rrbracket_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{g} (q', v')$ for every $v' \in V$ obtained by
 - evaluating every right-hand side expression e_i
 - bit taking every possible instantiation of nondeterministic bit values
 - updating *v* accordingly
- Formally:
 - $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$
 - $\sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)
- \Rightarrow Yields concrete transition system $T^c = (S, \bigcup_{e \in G} \xrightarrow{s}, s_0)$

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still v(a) ∈ C_{*} \ C possible for specific addresses a ∈ A \ D (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $\llbracket e_0 \rrbracket_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{g} (q', v')$ for every $v' \in V$ obtained by
 - **()** evaluating every right-hand side expression e_i
 - taking every possible instantiation of nondeterministic bit values
 - updating v accordingly
- Formally:
 - $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$
 - $\Box \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)
- ⇒ Yields concrete transition system $T^c = (S, \bigcup_{e \in G} \xrightarrow{s}, s_0)$

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still v(a) ∈ C_{*} \ C possible for specific addresses a ∈ A \ D (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $\llbracket e_0 \rrbracket_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{g} (q', v')$ for every $v' \in V$ obtained by

If evaluating every right-hand side expression e_i

taking every possible instantiation of nondeterministic bit values

Updating v accordingly

• Formally:

- $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$
- $\Box \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)

⇒ Yields concrete transition system $T^c = (S, \bigcup_{g \in G} \xrightarrow{s}, s_0)$

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still v(a) ∈ C_{*} \ C possible for specific addresses a ∈ A \ D (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $\llbracket e_0 \rrbracket_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{g} (q', v')$ for every $v' \in V$ obtained by

• evaluating every right-hand side expression e_i

2 taking every possible instantiation of nondeterministic bit values

updating v accordingly

Formally

• $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$ • $\sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)

Yields concrete transition system $T^c = (S, \bigcup_{s \in G} \xrightarrow{s})$

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still v(a) ∈ C_{*} \ C possible for specific addresses a ∈ A \ D (e.g., a = PINA)
- Guarded assignment g = q : e₀ → x₁ := e₁,..., x_n := e_n : q' enabled in state (q, v) ∈ S if [[e₀]]_v = 1
- Gives rise to concrete transition (q, v) → (q', v') for every v' ∈ V obtained by

• evaluating every right-hand side expression e_i

2 taking every possible instantiation of nondeterministic bit values

updating v accordingly

• Formally:

- $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$
- $\sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)

• Yields concrete transition system T

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still v(a) ∈ C_{*} \ C possible for specific addresses a ∈ A \ D (e.g., a = PINA)
- Guarded assignment g = q : e₀ → x₁ := e₁,..., x_n := e_n : q' enabled in state (q, v) ∈ S if [[e₀]]_v = 1
- Gives rise to concrete transition (q, v) → (q', v') for every v' ∈ V obtained by

• evaluating every right-hand side expression e_i

2 taking every possible instantiation of nondeterministic bit values

updating v accordingly

• Formally:

RVIT

- $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$
- $\sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)

 $\Rightarrow \text{ Yields concrete transition system } T^c = (S, \bigcup_{g \in G} \stackrel{g}{\longrightarrow}, s_0)$

- v(DDRA) = 11111100, v(PORTA) = 00000000, v(PINA) = * * * * * * *
- Execution of IN R1, A at address q:

 $q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$

• Transitions from (q, v) to

- **①** $(q+2, v[R1 \mapsto 0000000])$ **④** $(q+2, v[R1 \mapsto 00000001])$
- **a** $(q+2, v[R1 \mapsto 0000010])$
- $(q+2, v[R1 \mapsto 0000011])$

- v(DDRA) = 11111100, v(PORTA) = 00000000, v(PINA) = * * * * * * *
- Execution of IN R1, A at address q:

 $q: \texttt{R1} := (\texttt{DDRA} \land \texttt{PORTA}) \lor (\neg \texttt{DDRA} \land \texttt{PINA}) : q + 2$

- v(DDRA) = 11111100, v(PORTA) = 00000000, v(PINA) = * * * * * * *
- Execution of IN R1, A at address q:

 $q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$

• Transitions from (q, v) to

(
$$q + 2, v[\text{R1} \mapsto 0000000]$$
)
($q + 2, v[\text{R1} \mapsto 00000001]$)

$$(q+2, v[R1 \mapsto 0000010])$$

Replace nondeterministic by concrete values only if and when this is required by a subsequent computation step.

Informally: instantiation of v(a)[b] = * in $(q, v) \in S$ required when ex. $g = q : e_0 \rightarrow x_1 :=$

 $e_1,\ldots,x_n:=e_n:q'$ s.t.

- (a,b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument, or
- some *x_i* dereferences *a*, or
- some e_i yields * and x_i deterministic

Formally: g induces abstract transition $(q, v) \stackrel{g}{\Longrightarrow} (q', v')$ if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a,b) \neq *$ if (a,b) referred by e_0 , and
 - $[e_0]_{v_1} = 1, and$
 - $v_2 \subseteq v_1$ with $v_2(a, b) \neq *$ if some $e_i = op(y_1, \dots, y_n), op : T_1 \times \dots \times T_n \to T_0,$ and (a, b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\},$ and
 - $v_3 \sqsubseteq v_2$ with $v_3(a, b) \neq *$ if some $x_i = a \downarrow + d$, and
 - $v_4 := v_3[[[x_i]]_{v_3} \mapsto [[e_i]]_{v_3}; 1 \le i \le n]$, and • $v' \le v_4$ with $v'(a, b) \ne *$ if $[[x_i]]_{v_i} \in \{a, (a, b)\}$ for some $i, a \in D$

Informally: instantiation of v(a)[b] = * in $(q, v) \in S$ required when ex. $g = q : e_0 \rightarrow x_1 :=$

 $e_1,\ldots,x_n:=e_n:q'$ s.t.

- (a,b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument, or
- some *x_i* dereferences *a*, or
- some e_i yields * and x_i deterministic

- **Formally:** g induces abstract transition $(q, v) \stackrel{g}{\Longrightarrow} (q', v')$ if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.
 - $v_1 \sqsubseteq v$ with $v_1(a,b) \neq *$ if (a,b) referred by e_0 , and
 - $[e_0]_{v_1} = 1$, and
 - ▶ $v_2 \sqsubseteq v_1$ with $v_2(a, b) \neq *$ if some $e_i = op(y_1, ..., y_n), op : T_1 \times ... \times T_n \rightarrow T_0,$ and (a, b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\},$ and
 - $v_3 \sqsubseteq v_2$ with $v_3(a, b) \neq *$ if some $x_i = a \downarrow + d$, and
 - $v_4 := v_3[[[x_i]]_{v_3} \mapsto [[e_i]]_{v_3}; 1 \le i \le n]$, and • $v' \le v_4$ with $v'(a, b) \ne *$ if $[[x_i]]_{v_4} \in \{a, (a, b)\}$ for some $i, a \in D$

Informally: instantiation of v(a)[b] = * in $(q, v) \in S$ required when ex.

 $g = q : e_0 \to x_1 :=$ $e_1, \dots, x_n := e_n : q' \text{ s.t.}$

- (a, b) referred by e_0 , or
- *g* enabled and some *e_i* refers to (*a*, *b*) in a deterministic argument, or
- some *x_i* dereferences *a*, or
- some e_i yields * and x_i deterministic

Formally: *g* induces abstract transition

$$(q,v) \stackrel{g}{\Longrightarrow} (q',v')$$
 if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a,b) \neq *$ if (a,b) referred by e_0 , and
- **2** $\llbracket e_0 \rrbracket_{v_1} = 1$, and
- $v_2 \sqsubseteq v_1$ with $v_2(a, b) \neq *$ if some $e_i = op(y_1, \dots, y_n), op : T_1 \times \dots \times T_n \to T_0,$ and (a, b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\},$ and
- $v_3 \sqsubseteq v_2$ with $v_3(a,b) \neq *$ if some $x_i = a \downarrow + d$, and
- $v_4 := v_3[[[x_i]]_{v_3} \mapsto [[e_i]]_{v_3}; 1 \le i \le n]$, and • $v' \le v_4$ with $v'(a, b) \ne *$ if
 - $[x_i]_{v_4} \in \{a, (a, b)\}$ for some $i, a \in D$

Informally: instantiation of v(a)[b] = * in $(q, v) \in S$ required when ex.

 $g = q : e_0 \to x_1 :=$ $e_1, \dots, x_n := e_n : q' \text{ s.t.}$

- (a, b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument, or
- some *x_i* dereferences *a*, or
- some e_i yields * and x_i deterministic

Formally: *g* induces abstract transition

$$(q,v) \stackrel{g}{\Longrightarrow} (q',v')$$
 if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a, b) \neq *$ if (a, b) referred by e_0 , and
- **2** $\llbracket e_0 \rrbracket_{v_1} = 1$, and
- $v_2 \sqsubseteq v_1$ with $v_2(a, b) \neq *$ if some $e_i = op(y_1, ..., y_n), op : T_1 \times ... \times T_n \rightarrow T_0,$ and (a, b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\},$ and
- $v_3 \sqsubseteq v_2$ with $v_3(a,b) \neq *$ if some $x_i = a \downarrow + d$, and
- **●** $v_4 := v_3[[[x_i]]_{v_3} \mapsto [[e_i]]_{v_3}; 1 \le i \le n]$, and
 - $v' ≤ v_4 \text{ with } v'(a, b) ≠ * \text{ if }$ $[[x_i]]_{v_4} ∈ \{a, (a, b)\} \text{ for some } i, a ∈ D$

Informally: instantiation of v(a)[b] = * in $(q, v) \in S$ required when ex.

 $g = q : e_0 \to x_1 :=$ $e_1, \dots, x_n := e_n : q' \text{ s.t.}$

- (a, b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument, or
- some *x_i* dereferences *a*, or
- some e_i yields * and x_i deterministic

Formally: *g* induces abstract transition

$$(q,v) \stackrel{g}{\Longrightarrow} (q',v')$$
 if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a, b) \neq *$ if (a, b) referred by e_0 , and
- **2** $\llbracket e_0 \rrbracket_{v_1} = 1$, and
- $v_2 \sqsubseteq v_1$ with $v_2(a, b) \neq *$ if some $e_i = op(y_1, ..., y_n), op : T_1 \times ... \times T_n \rightarrow T_0,$ and (a, b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\},$ and
- $v_3 \sqsubseteq v_2$ with $v_3(a,b) \neq *$ if some $x_i = a \downarrow + d$, and
- **5** $v_4 := v_3[[x_i]]_{v_3} \mapsto [[e_i]]_{v_3}; 1 \le i \le n]$, and
- $v' \le v_4$ with $v'(a,b) \ne *$ if $[x_i]_{v_4} \in \{a, (a, b)\}$ for some $i, a \in D$

Informally: instantiation of v(a)[b] = * in $(q, v) \in S$ required when ex.

 $g = q : e_0 \to x_1 :=$ $e_1, \dots, x_n := e_n : q' \text{ s.t.}$

- (a, b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument, or
- some *x_i* dereferences *a*, or
- some e_i yields * and x_i deterministic

Formally: *g* induces abstract transition

$$(q,v) \stackrel{g}{\Longrightarrow} (q',v')$$
 if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a, b) \neq *$ if (a, b) referred by e_0 , and
- **2** $\llbracket e_0 \rrbracket_{v_1} = 1$, and
- $v_2 \sqsubseteq v_1$ with $v_2(a, b) \neq *$ if some $e_i = op(y_1, ..., y_n), op : T_1 \times ... \times T_n \rightarrow T_0,$ and (a, b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\},$ and
- $v_3 \sqsubseteq v_2$ with $v_3(a,b) \neq *$ if some $x_i = a \downarrow + d$, and
- $v_4 := v_3[[[x_i]]_{v_3} \mapsto [[e_i]]_{v_3}; 1 \le i \le n]$, and • $v' \le v_4$ with $v'(a, b) \ne *$ if

• v(DDRA) = 11111100, v(PORTA) = 00000000, v(PINA) = * * * * * * *

• Execution of IN R1, A at address q:

• $q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$ • yields transition $(q, y) \Longrightarrow (q + 2, y[R1 \mapsto 000000 * *])$

• Execution of SBRC R1, 0 at address q':

•
$$q' : \operatorname{R1}[0] = 0 \rightarrow : q' + 3$$

 $q' : \operatorname{R1}[0] = 1 \rightarrow : q' + 2$

• yields $(q', v') \Longrightarrow (q' + 3, v[\mathbb{R}1 \mapsto 000000 * 0])$ and $(q', v') \Longrightarrow (q' + 2, v[\mathbb{R}1 \mapsto 000000 * 1])$

• v(DDRA) = 11111100, v(PORTA) = 00000000, v(PINA) = * * * * * * *

• Execution of IN R1, A at address q:

- $q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$
- yields transition $(q, v) \Longrightarrow (q+2, v[\mathbb{R}1 \mapsto 000000 * *])$

1,1

• Execution of SBRC R1, 0 at address q':

•
$$q': \operatorname{R1}[0] = 0 \rightarrow : q' + 3$$

$$q': \operatorname{R1}[0] = 1 \rightarrow : q' + 2$$

- yields $(q', v') \Longrightarrow (q' + 3, v[\mathbb{R}1 \mapsto 000000 * 0])$
 - and $(q', v') \Longrightarrow (q' + 2, v[\text{R1} \mapsto 000000 * 1])$

• v(DDRA) = 11111100, v(PORTA) = 00000000, v(PINA) = * * * * * * *

• Execution of IN R1, A at address q:

- $q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$
- yields transition $(q, v) \Longrightarrow (q+2, v[\mathbb{R}1 \mapsto 000000 * *])$

• Execution of SBRC R1, 0 at address q':

•
$$q' : \operatorname{R1}[0] = 0 \longrightarrow q' + 3$$

 $q' : \operatorname{R1}[0] = 1 \longrightarrow q' + 2$

• yields $(q', v') \Longrightarrow (q' + 3, v[\mathbb{R}1 \mapsto 000000 * 0])$ and $(q', v') \Longrightarrow (q' + 2, v[\mathbb{R}1 \mapsto 000000 * 1])$

Soundness of Abstraction I

- Property specification given by temporal formula φ over set *P* of bit value expressions
- Defines labeling $\lambda : S \to 2^P : (q, v) \mapsto \{p \in P \mid \llbracket p \rrbracket_v = 1\}$
 - concrete LTS: $L^c = (S, \bigcup_{g \in G} \xrightarrow{g}, s_0, \lambda)$
 - abstract LTS: $L^a = (S, \bigcup_{g \in G} \stackrel{g}{\Longrightarrow}, s_0, \lambda)$
 - note: $\llbracket p \rrbracket_{v}$ always defined since $Var(\varphi) \subseteq D$
- Connection between L^c and L^a given by simulation: a binary relation $\rho \subseteq S \times S$ such that $s_0 \rho s_0$ and, whenever s_1
 - $\lambda(s_1) = \lambda(s_2)$ and
 - for every transition s₁ → s'₁ there exists s'₂ ∈ S such that s₂ ⇒ s' and s' os'

Soundness of Abstraction I

- Property specification given by temporal formula φ over set *P* of bit value expressions
- Defines labeling $\lambda : S \to 2^P : (q, v) \mapsto \{p \in P \mid \llbracket p \rrbracket_v = 1\}$
 - concrete LTS: $L^c = (S, \bigcup_{g \in G} \xrightarrow{g}, s_0, \lambda)$
 - abstract LTS: $L^a = (S, \bigcup_{g \in G} \stackrel{g}{\Longrightarrow}, s_0, \lambda)$
 - note: $\llbracket p \rrbracket_{\nu}$ always defined since $Var(\varphi) \subseteq D$
- Connection between L^c and L^a given by simulation: a binary relation $\rho \subseteq S \times S$ such that $s_0\rho s_0$ and, whenever $s_1\rho s_2$,
 - $\lambda(s_1) = \lambda(s_2)$ and
 - for every transition $s_1 \xrightarrow{g} s'_1$ there exists $s'_2 \in S$ such that $s_2 \xrightarrow{g} s'_2$ and $s'_1 \rho s'_2$

Soundness of Abstraction II

Theorem

 L^a simulates L^c .

Proof.

Simulation relation given by partial order on bit values: $(q_1, v_1)\rho(q_2, v_2)$ iff $q_1 = q_2$ and $v_1 \sqsubseteq v_2$

Corollary

Delayed nondeterminism is sound w.r.t. "path-universal" temporal logics such as LTL or ACTL:

 $L^a \models \varphi$ implies $L^c \models \varphi$

(i.e., no false positives)

Soundness of Abstraction II

Theorem

 L^a simulates L^c .

Proof.

Simulation relation given by partial order on bit values: $(q_1, v_1)\rho(q_2, v_2)$ iff $q_1 = q_2$ and $v_1 \sqsubseteq v_2$

Corollary

Delayed nondeterminism is sound w.r.t. "path-universal" temporal logics such as LTL or ACTL:

 $L^a \models \varphi$ implies $L^c \models \varphi$

(i.e., no false positives)

Soundness of Abstraction II

Theorem

 L^a simulates L^c .

Proof.

Simulation relation given by partial order on bit values: $(q_1, v_1)\rho(q_2, v_2)$ iff $q_1 = q_2$ and $v_1 \sqsubseteq v_2$

Corollary

Delayed nondeterminism is sound w.r.t. "path-universal" temporal logics such as LTL or ACTL:

$$L^a \models \varphi$$
 implies $L^c \models \varphi$

(i.e., no false positives)

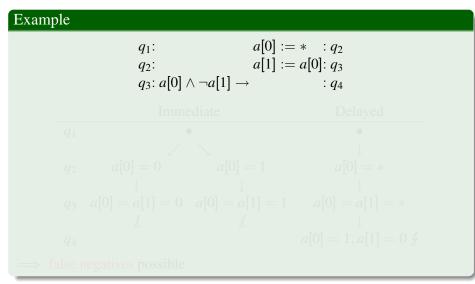
Program	Instantiation	# states stored	# states created	Size [MB]	Time [s]	Reduction
light switch	immediate	6,624	9,050	2	0.2	-
	delayed	352	380	< 1	0.01	95%
plant	immediate	801,616	854,203	256	23.19	-
	delayed	188,404	195,955	61	5.05	76%
reentrance	immediate	107,649	110,961	33	2.8	-
problem	delayed	107,649	110,961	33	2.8	0%
traffic light	immediate	35,613	38,198	11	0.92	-
	delayed	10,004	10,520	3	0.28	72%
window lift	immediate	10,100,400	11,196,174	2,049	416.98	-
	delayed	323,450	444,191	102	10.78	97%

- Delayed Nondeterminism: abstraction technique for explicit-state model checking of microcontroller code (similar to "X-valued simulation" in hardware verification)
- Significant reduction of state space in concrete examples
- Over-approximation:
 - sound for path-universal logics (simulation)
 - generally incomplete (false negatives due to copying of nondeterminism)
- Future work:
 - handle more microcontrollers (Infineon Tricore, Intel MC, ...)
 - establish bisimulation by introducing identities for nondeterministic values
 - implement compiler generator for state-space evaluators

- Delayed Nondeterminism: abstraction technique for explicit-state model checking of microcontroller code (similar to "X-valued simulation" in hardware verification)
- Significant reduction of state space in concrete examples
- Over-approximation:
 - sound for path-universal logics (simulation)
 - generally incomplete (false negatives due to copying of nondeterminism)
- Future work:
 - handle more microcontrollers (Infineon Tricore, Intel MC, ...)
 - establish bisimulation by introducing identities for nondeterministic values
 - implement compiler generator for state-space evaluators

- Delayed Nondeterminism: abstraction technique for explicit-state model checking of microcontroller code (similar to "X-valued simulation" in hardware verification)
- Significant reduction of state space in concrete examples
- Over-approximation:
 - sound for path-universal logics (simulation)
 - generally incomplete (false negatives due to copying of nondeterminism)
- Future work:
 - handle more microcontrollers (Infineon Tricore, Intel MC, ...)
 - establish bisimulation by introducing identities for nondeterministic values
 - implement compiler generator for state-space evaluators

- Delayed Nondeterminism: abstraction technique for explicit-state model checking of microcontroller code (similar to "X-valued simulation" in hardware verification)
- Significant reduction of state space in concrete examples
- Over-approximation:
 - sound for path-universal logics (simulation)
 - generally incomplete (false negatives due to copying of nondeterminism)
- Future work:
 - handle more microcontrollers (Infineon Tricore, Intel MC, ...)
 - establish bisimulation by introducing identities for nondeterministic values
 - implement compiler generator for state-space evaluators



		$:=*:q_2$
	$\begin{array}{c} q_2\colon a[1] \ q_3\colon a[0]\wedge eg a[1] ightarrow \end{array}$	$:=a[0]:q_3$ $:q_4$
	Immediate	Delayed
q_1	•	•

Example			
	q_1 :	$a[0] := * : q_2$	
	$\begin{array}{c} q_2: \ q_3: a[0] \wedge eg a[1] \end{array}$	$a[1] := a[0]: q_3$ $\rightarrow : q_4$	
	Immediate	-	
$\overline{q_1}$	•	Delayed	
-			
q_2	$a[0] = 0 \qquad a[0]$	a[0] = 1 $a[0] = *$	
	legatives possible		_

Observation: over-approximation due to copying of nondeterminism

Example		
	q_1 : $a[0] :=$	* : q ₂
		$= a[0]: q_3$
	q_3 : $a[0] \land \neg a[1] \rightarrow$	$: q_4$
	Immediate	Delayed
$\overline{q_1}$	•	•
		_ ↓
q_2	$a[0] = 0 \qquad \qquad a[0] = 1 \qquad \qquad \downarrow$	a[0] = *
q_3	a[0] = a[1] = 0 $a[0] = a[1] = 1$	a[0] = a[1] = *

⇒ false negatives possible

Example				
	q_1 :		* : q ₂	
	q_2 :		$= a[0]: q_3$	
	$q_3: a[0]$ /	$\land \neg a[1] \rightarrow$	$:q_4$	
	Imme	ediate	Delayed	
q_1	•	•	•	
	1	\searrow	\downarrow	
q_2	a[0] = 0	a[0] = 1	a[0] = *	
	\downarrow	\downarrow	\downarrow	
q_3	a[0] = a[1] = 0	a[0] = a[1] = 1	a[0] = a[1] = *	
	X	X	\downarrow	
q_4			$a[0] = 1, a[1] = 0 \notin$	

Observation: over-approximation due to copying of nondeterminism

Example		
	q_1 :	$a[0] := * : q_2$
	-	$a[1] := a[0]: q_3$
	q_3 : $a[0] \wedge \neg a[1] -$	\rightarrow : q_4
	Immediate	Delayed
$\overline{q_1}$	•	•
	\checkmark	\downarrow
q_2	$a[0] = 0 \qquad a[0]$	$= 1 \qquad a[0] = * \downarrow$
	\downarrow \downarrow	\downarrow
q_3	a[0] = a[1] = 0 $a[0] = a$	$\begin{bmatrix} 1 \end{bmatrix} = 1 \qquad a[0] = \overset{+}{a}[1] = * \qquad \downarrow$
	X A	∠ ↓
q_4		$a[0] = 1, a[1] = 0 \not\geq$
1		

 \implies false negatives possible

