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C Code vs. Assembly Code

Most microcontroller software written in C
Many model checkers accept (ANSI) C programs: BLAST, CBMC,
MAGIC, ...
Often restricted support of C constructs:

no expressions with side effects
no recursion
only integer variables
...

Many microcontroller features not considered in ANSI C:
direct hardware access (registers, ...)
embedded assembly code
interrupts
...

Case studies from industrial applications contain errors which
passed all tests and reviews
are only observable on assembly level
caused by forgotten interrupt enabling/disabling, reentrance problems, ...

=⇒ Base model checking on assembly code
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C Code Before Preprocessing

int main (void) {
init();// call initialization
sei();
while(1) {

inputs = PINA & 0x0F;
cli();
if (direction < 5) {

if (inputs & (1 << 1)) {// down
if (direction = 2 || direction = 3) {

TCCR1B = 0x00;
TIFR = 0xFF;
TCNT1 = 0x00;
TIMSK = (1<<OCIE1A);
TCCR1B = 0x05;
direction = 1;

}
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C Code After Preprocessing

int main (void) {
init();
__asm__ __volatile__ ("sei" ::);
while(1) {

inputs = (*(volatile uint8_t *)((0x19) + 0x20)) & 0x0F;
asm__ __volatile__ ("cli" ::);
if (direction < 5) {

if (inputs & (1 << 1)) {
if (direction = 2 || direction = 3) {

(*(volatile uint8_t *)((0x2E) + 0x20)) = 0x00;
(*(volatile uint8_t *)((0x38) + 0x20)) = 0xFF;
(*(volatile uint16_t *)((0x2C) + 0x20)) = 0x00;
(*(volatile uint8_t *)((0x39) + 0x20)) = (1<<4);
(*(volatile uint8_t *)((0x2E) + 0x20)) = 0x05;
direction = 1;

}

Delayed Nondeterminism HVC 2007 6



Pros and Cons of Using Assembly Code

Advantages:
Errors of all development stages detectable:

(C) programming errors
compiler errors
errors invisible in the C code (reentrance problems, ...)
errors in handling the hardware (interrupts, ...)

Instructions (relatively) easy to handle

Clean and well documented semantics

Implementation close to actual execution

Disadvantages:
Hardware dependency
=⇒ compiler-generating approach

Bigger state spaces (finer granularity)
=⇒ abstraction techniques
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The [mc]square Model Checker

[mc]square

C file

assembly 

program

preprocessor

model 

checker

formula
parser

result
graph

counterexample 

generator

state space

simulator

cfg static analyzer

formula

elf file

C file
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The ATMEL ATmega16 Microcontroller

8-bit microcontroller

16 KB flash memory

1KByte internal SRAM

512 bytes EEPROM

3 timer/counter units

4 I/O Ports 8-bit

20 vectorized interrupts
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Sources of Nondeterminism

I/O ports

Timer

SPI

TWI

USART

...
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I/O Ports

Basic means to monitor
and control external
hardware

Each 8 I/O pins
(byte access)

Bidirectional

Monitoring, access and control of I/O ports
via three special registers for each port:

Data Direction Register (DDR):
specifies input (= 0) or output (= 1)
property of corresponding pin

Port Register (PORT):
specifies values of output pins

Port Input Register (PIN):
contains values of input pins
(read-only)
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Impact on State Space I

0 0 0 0 0 0 0 0

...

...

R18 = 1 R18 = 2 R18 = 255

IN R18 PINA

R18 = 0

DDRA:
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Impact on State Space II

...

1 1 0 0 1 1 1 0PORTA:

1 1 1 1 1 1 1 1DDRA:

R18 = 206

IN R18 PINA

Delayed Nondeterminism HVC 2007 13



Impact on State Space III

...

0 0 0 0 0 0 0 0PORTA:

1 1 1 1 1 1 0 0DDRA:

IN R18 PINA

R18 = 1 R18 = 2R18 = 0 R18 = 3
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Delayed Nondeterminism

R18 = 110011**

R18 = 110011**

1 1 0 0 1 1 1 0PORTA:

1 1 1 1 1 1 0 0DDRA:

IN R18 PINA

...

R18 = 110011*0 R18 = 110011*1

SBRC R18 0
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The Formal Model: State Space

Bits: B := {0, 1}
Bytes: C := B8

Memory addresses: A := Cm (here: m = 2)

Nondeterministic bit value: ∗
B∗ := B ∪ {∗}, C∗ := B8

∗

Deterministic addresses D ⊆ A
(certain registers, variables in formula, ...)

Memory states: V := {v | v : A → C∗} where v(a) ∈ C for every a ∈ D

Control locations: Q (here: program counter)

(System) states: S := Q× V
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Flow of Control

In every cycle:
1 run environment handler g1; . . . ; gk

(introduces nondeterministic values where necessary),
2 if necessary, apply interrupt dispatcher e1 : q1 > . . . > el : ql

(reaction to extraordinary events such as interrupts); otherwise
3 apply instruction handler q : h1 : q′1 > . . . > hm : q′m

for current location q ∈ Q
(normal execution of machine instructions)

Here each gi, hi is a guarded assignment of the form

e0 → x1 := e1, . . . , xn := en

(ej value expressions, xj address expressions)
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Example: Environment Handler

TCCR0[CS02] = 1 ∨ TCCR0[CS01] = 1 ∨ TCCR0[CS00] = 1
→ TIFR[TOV0] := nd(TIFR[TOV0]);
DDRB[DDB2] = 0 → GIFR[INTF2] := nd(GIFR[INTF2]); . . .

Timer overflow interrupt possible if timer activated

External interrupt possible if input enabled

Here: nd(∗) := ∗, nd(0) := ∗, and nd(1) := 1
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Example: Interrupt Dispatcher

SREG[I] = 1 ∧ TIMSK[TOIE0] = 1 ∧ TIFR[TOV0] = 1 : 18 >
SREG[I] = 1 ∧ GICR[INT2] = 1 ∧ GIFR[INTF2] = 1 : 36 > . . .

Timer interrupt raised if
interrupts are globally enabled and
timer interrupt not masked and
timer overflow has occurred

Effect: jump to interrupt handler at address 18
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Example: Adding Instruction

ADD Ri,Rj at address q:

q : Ri := Ri + Rj,SREG[Z] := (Ri + Rj = 0),SREG[C] := . . . , . . . : q + 2

Adds contents of registers Ri and Rj and stores result in Ri
Sets flags in status register SREG:

zero flag Z (= 0)
carry flag C (= 1)
...

. + . : C× C → C

. = 0 : C → B
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Example: Input Instruction

IN Ri,A at address q:

q : Ri := (DDRA ∧ PORTA) ∨ (¬DDRA ∧ PINA) : q + 2

Copies contents of registers PORTA/PINA according to mask DDRA

. ∧ . : C× C∗ → C∗

. ∨ . : C∗ × C∗ → C∗

¬. : C → C

Delayed Nondeterminism HVC 2007 21



Example: “Skip If Bit Cleared” Instruction

SBRC Ri,b at address q:

q : Ri[b] = 0 →: q + 3 >
Ri[b] = 1 →: q + 2

Branches control according to bth bit in register Ri
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Immediate Instantiation I

Immediate Instantiation
Each assignment of nondeterministic bit values is resolved by assigning all
possible combinations of concrete values.

Thus: only deterministic values are allowed to be stored
Still v(a) ∈ C∗ \ C possible for specific addresses a ∈ A \ D
(e.g., a = PINA)
Guarded assignment g = q : e0 → x1 := e1, . . . , xn := en : q′ enabled in
state (q, v) ∈ S if Je0Kv = 1
Gives rise to concrete transition (q, v)

g−→ (q′, v′) for every v′ ∈ V
obtained by

1 evaluating every right-hand side expression ei
2 taking every possible instantiation of nondeterministic bit values
3 updating v accordingly

Formally:
v′ := v[JxiKv 7→ ci; 1 ≤ i ≤ n] with C ∪ B 3 ci v JeiKv for all 1 ≤ i ≤ n
v ⊆ B∗ × B∗ given by 0 v ∗ and 1 v ∗ (pointwise lifted to C∗ and V)

=⇒ Yields concrete transition system Tc = (S,
⋃

g∈G
g−→, s0)
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Immediate Instantiation II

Example
v(DDRA) = 11111100, v(PORTA) = 00000000,
v(PINA) = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Execution of IN R1,A at address q:

q : R1 := (DDRA ∧ PORTA) ∨ (¬DDRA ∧ PINA) : q + 2

Transitions from (q, v) to
1 (q + 2, v[R1 7→ 00000000])
2 (q + 2, v[R1 7→ 00000001])
3 (q + 2, v[R1 7→ 00000010])
4 (q + 2, v[R1 7→ 00000011])
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Delayed Nondeterminism I

Delayed Nondeterminism
Replace nondeterministic by concrete values only if and when this is required
by a subsequent computation step.
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Delayed Nondeterminism II

Informally: instantiation of
v(a)[b] = ∗ in (q, v) ∈ S
required when ex.
g = q : e0 → x1 :=
e1, . . . , xn := en : q′ s.t.

(a, b) referred by e0, or
g enabled and some ei

refers to (a, b) in a
deterministic argument,
or
some xi dereferences a,
or
some ei yields ∗ and xi

deterministic

Formally: g induces abstract transition
(q, v)

g
=⇒ (q′, v′) if ex. v1, v2, v3, v4 ∈ V s.t.

1 v1 v v with v1(a, b) 6= ∗ if (a, b) referred by
e0, and

2 Je0Kv1 = 1, and
3 v2 v v1 with v2(a, b) 6= ∗ if some

ei = op(y1, . . . , yn), op : T1 × . . .× Tn → T0,
and (a, b) referred by some yj where
Tj ∈ {C, B}, and

4 v3 v v2 with v3(a, b) 6= ∗ if some
xi = a↓+ d, and

5 v4 := v3[JxiKv3 7→ JeiKv3 ; 1 ≤ i ≤ n], and
6 v′ ≤ v4 with v′(a, b) 6= ∗ if

JxiKv4 ∈ {a, (a, b)} for some i, a ∈ D

=⇒ Yields abstract transition system Ta = (S,
⋃

g∈G
g

=⇒, s0)
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Delayed Nondeterminism III

Example
v(DDRA) = 11111100, v(PORTA) = 00000000,
v(PINA) = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Execution of IN R1,A at address q:

q : R1 := (DDRA ∧ PORTA) ∨ (¬DDRA ∧ PINA) : q + 2
yields transition (q, v) =⇒ (q + 2︸ ︷︷ ︸

q′

, v[R1 7→ 000000 ∗ ∗]︸ ︷︷ ︸
v′

)

Execution of SBRC R1,0 at address q′:
q′ : R1[0] = 0 →: q′ + 3
q′ : R1[0] = 1 →: q′ + 2
yields (q′, v′) =⇒ (q′ + 3, v[R1 7→ 000000 ∗ 0])
and (q′, v′) =⇒ (q′ + 2, v[R1 7→ 000000 ∗ 1])
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Soundness of Abstraction I

Property specification given by temporal formula ϕ over set P of bit
value expressions
Defines labeling λ : S → 2P : (q, v) 7→ {p ∈ P | JpKv = 1}

concrete LTS: Lc = (S,
⋃

g∈G
g−→, s0, λ)

abstract LTS: La = (S,
⋃

g∈G
g

=⇒, s0, λ)

note: JpKv always defined since Var(ϕ) ⊆ D

Connection between Lc and La given by simulation:
a binary relation ρ ⊆ S× S such that s0ρs0 and, whenever s1ρs2,

λ(s1) = λ(s2) and
for every transition s1

g−→ s′1
there exists s′2 ∈ S
such that s2

g
=⇒ s′2 and s′1ρs′2
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Soundness of Abstraction II

Theorem
La simulates Lc.

Proof.
Simulation relation given by partial order on bit values:

(q1, v1)ρ(q2, v2) iff q1 = q2 and v1 v v2

Corollary
Delayed nondeterminism is sound w.r.t. “path-universal” temporal logics
such as LTL or ACTL:

La |= ϕ implies Lc |= ϕ
(i.e., no false positives)
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Empirical Results

Program Instantiation# states stored# states createdSize [MB]Time [s]Reduction

light switch
immediate 6,624 9,050 2 0.2 -

delayed 352 380 < 1 0.01 95%

plant
immediate 801,616 854,203 256 23.19 -

delayed 188,404 195,955 61 5.05 76%
reentrance
problem

immediate 107,649 110,961 33 2.8 -
delayed 107,649 110,961 33 2.8 0%

traffic light
immediate 35,613 38,198 11 0.92 -

delayed 10,004 10,520 3 0.28 72%

window lift
immediate 10,100,400 11,196,174 2,049 416.98 -

delayed 323,450 444,191 102 10.78 97%
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Conclusion

Delayed Nondeterminism: abstraction technique for explicit-state model
checking of microcontroller code
(similar to “X-valued simulation” in hardware verification)

Significant reduction of state space in concrete examples
Over-approximation:

sound for path-universal logics (simulation)
generally incomplete (false negatives due to copying of nondeterminism)

Future work:
handle more microcontrollers (Infineon Tricore, Intel MC, ...)
establish bisimulation by introducing identities for nondeterministic values
implement compiler generator for state-space evaluators
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Incompleteness of Abstraction

Observation: over-approximation due to copying of nondeterminism

Example

q1: a[0] := ∗ : q2
q2: a[1] := a[0]: q3
q3: a[0] ∧ ¬a[1] → : q4

Immediate Delayed
q1 • •

↙ ↘ ↓
q2 a[0] = 0 a[0] = 1 a[0] = ∗

↓ ↓ ↓
q3 a[0] = a[1] = 0 a[0] = a[1] = 1 a[0] = a[1] = ∗

6 ↓ 6 ↓ ↓
q4 a[0] = 1, a[1] = 0 "

=⇒ false negatives possible
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