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What is Code Coverage?

�A quality measurement used in software testing
�A quantitative way to describe the degree to which 

the source code of a program has been tested
�Feedback for improving the tests
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�Via instrumentation
�Adding additional code to collect coverage data
� Introduce overhead on execution time

�Source level instrumentation is the common practice
� Instrumentation done during compilation

�For example gnu tools
�gcc/gcov – compilation + instrumentation
� lcov – for analysis

How is Code Coverage Done?
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Motivation for Post-Link Instrumentation
� Challenging architectures like kernel & embedded systems

� The current solutions (e.g. GCOV) may not address all the 
issues
� No OS facilities
� Non-terminating code

� Integrate code coverage in all tests along the entire 
development cycle
� Same tests for coverage and functional 
� Enables accumulation of coverage data between phases
As a result, coverage:
� is done on actual (optimized) code (e.g. SVT)
� instrumentation must have low overhead

� The tests cycle period should be reasonable
� The behavior should not be affected (e.g. time outs)
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Post-link Code Coverage Characteristics

�Works on the running code and does not interfere 
with compiler optimizations

�The coverage data is influenced by the compiler 
transformation and optimization
�Different from source level coverage
�More information available

�Enables further reduction in instrumentation 
overhead
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Raw Coverage Information From FDPR-Pro

Basic Block – stream of instructions with one entry and one 
exit with no control flow in the middle
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FoCuS’ Source View
switch (a) {

case 1:
a = a * 2
break;

case 2:
a = a * 4;
break;

….
case N:

a = a * 2^(N-4)
break;

default:
a = 0;
break;

}
c = a * b

BBS1: li r4, N
cmp r3, r4
bgt BBD

BBS2: li r4, 1
cmp r3,r4
blt BBD

BBS3: sub r5,r3,r4
ld  r6,(BT+r5*4) 
br r6

BBC1: shl r3, 1
b   BBE

…..
BBCN: shl r3, N

b   BBE
BBD:  li r3,0
BBE:  mul r12,r3,r11

with Post-link Mapping

White – no matching BB    
Red – Uncovered Code    
Green – Covered code                               
Yellow – Partially 
covered,  matches to 
covered and non-
covered BBs
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Working with Post-Link Code Coverage

�At the high level same as in regular code coverage
�The new methodology provides a compiler 

transformations dictionary to help with:
�White lines – not  in the code

�Due to compiler optimization
�No need for additional tests to cover these lines

�Yellow lines – partially covered
�Due to the translation of language constructs (e.g. 

switch statement)
�Due to compiler optimization
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Understanding Coverage – Macro Example
Partial coverage
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Understanding Coverage - If Example
Partial coverage
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Understanding Coverage - If Example (cont)
Partial coverage
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�Motivation: integrating coverage along the entire 
development process
�More constraints as we approach shipment
�And beyond – at the customer site

�Post link – a better starting point
�Works on optimized code
�Lend itself for reducing instrumentation overhead

�Only covered/no-covered is needed
�Using self modifying instrumentation

Low Overhead Instrumentation at Post-Link
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Low Overhead Instrumentation - Results
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Conclusion
�Post-link code coverage is useful

�Can be mapped back to source code
�Enables compiler optimization
�Supported by compiler transformation dictionary

� In some cases post-link code coverage is better
�Enables integrating coverage in the development 

process
�Near shipment and beyond

�More flexible for low overhead instrumentation
�Future work - enhancing the visual aids to improve the 

understanding of more complex compiler optimizations
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Questions ?

FoCuS: www.alphaworks.ibm.com/tech/focus

FDPR-Pro: www.haifa.il.ibm.com/projects/systems/cot/fdpr
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Line Number Information and optimization

�GCC man
“Unlike most other C compilers, GCC allows you to
use `-g' with `-O‘”

�xlc man
“If you specify the -qlinedebug option, the inlining
option defaults to -Q! (no functions are inlined).”
But inline can be forced and the line-number info
will be correct


