
IBM Labs in Haifa © 2006 IBM Corporation

The Advantages
of

Post-link Code Coverage

Orna Raz, Moshe Klausner, Nitzan Peleg, Gad
Haber, Eitan Farchi, Shachar Fienblit, Yakov
Filiarsky, Shay Gammer and Sergey Novikov

IBM Labs in Haifa

© 2007 IBM Corporation� Haifa Verification Conference 2007

What is Code Coverage?

�A quality measurement used in software testing
�A quantitative way to describe the degree to which

the source code of a program has been tested
�Feedback for improving the tests

IBM Labs in Haifa

© 2007 IBM Corporation� Haifa Verification Conference 2007

�Via instrumentation
�Adding additional code to collect coverage data
� Introduce overhead on execution time

�Source level instrumentation is the common practice
� Instrumentation done during compilation

�For example gnu tools
�gcc/gcov – compilation + instrumentation
� lcov – for analysis

How is Code Coverage Done?

IBM Labs in Haifa

© 2007 IBM Corporation� Haifa Verification Conference 2007

Execution

Instrumented
Executable

Compilation +
Instrumentation

Code Coverage
Views

Coverage
Analysis

Common Code Coverage Process

Coverage
Data

Obtain Code Coverage Data Analyze Code Coverage

Source Code Source Code

IBM Labs in Haifa

© 2007 IBM Corporation� Haifa Verification Conference 2007

Execution

Instrumented
Executable

Instrumentation

Code Coverage
Views

Coverage
Analysis

Post Link Code Coverage Process

Executable

Coverage
Data

Compilation

Source Code Source Code

Obtain Code Coverage Data Analyze Code Coverage

IBM Labs in Haifa

© 2007 IBM Corporation� Haifa Verification Conference 2007

Motivation for Post-Link Instrumentation
� Challenging architectures like kernel & embedded systems

� The current solutions (e.g. GCOV) may not address all the
issues
� No OS facilities
� Non-terminating code

� Integrate code coverage in all tests along the entire
development cycle
� Same tests for coverage and functional
� Enables accumulation of coverage data between phases
As a result, coverage:
� is done on actual (optimized) code (e.g. SVT)
� instrumentation must have low overhead

� The tests cycle period should be reasonable
� The behavior should not be affected (e.g. time outs)

IBM Labs in Haifa

© 2007 IBM Corporation� Haifa Verification Conference 2007

Post-link Code Coverage Characteristics

�Works on the running code and does not interfere
with compiler optimizations

�The coverage data is influenced by the compiler
transformation and optimization
�Different from source level coverage
�More information available

�Enables further reduction in instrumentation
overhead

IBM Labs in Haifa

© 2007 IBM Corporation� Haifa Verification Conference 2007

Code Coverage
Views

FoCuS
Analysis

Execution

Instrumented
Executable

Our Post Link Code Coverage Process

Coverage
Data

Source Code

Obtain Code Coverage Data Analyze Code Coverage

FDPR-Pro
Instrumentation

Optimized
Executable

IBM Labs in Haifa

© 2007 IBM Corporation� Haifa Verification Conference 2007

Code Coverage
Views

FoCuS
Analysis

Execution

Instrumented
Executable

gcov
Instrumentation

FoCuS can work with gcov as well (and more)

Coverage
Data

Obtain Code Coverage Data Analyze Code Coverage

Source Code Source Code

IBM Labs in Haifa

© 2007 IBM Corporation	
 Haifa Verification Conference 2007

Raw Coverage Information From FDPR-Pro

Basic Block – stream of instructions with one entry and one
exit with no control flow in the middle

IBM Labs in Haifa

© 2007 IBM Corporation		 Haifa Verification Conference 2007

FoCuS’ Source View
switch (a) {

case 1:
a = a * 2
break;

case 2:
a = a * 4;
break;

….
case N:

a = a * 2^(N-4)
break;

default:
a = 0;
break;

}
c = a * b

BBS1: li r4, N
cmp r3, r4
bgt BBD

BBS2: li r4, 1
cmp r3,r4
blt BBD

BBS3: sub r5,r3,r4
ld r6,(BT+r5*4)
br r6

BBC1: shl r3, 1
b BBE

…..
BBCN: shl r3, N

b BBE
BBD: li r3,0
BBE: mul r12,r3,r11

with Post-link Mapping

White – no matching BB
Red – Uncovered Code
Green – Covered code
Yellow – Partially
covered, matches to
covered and non-
covered BBs

IBM Labs in Haifa

© 2007 IBM Corporation	� Haifa Verification Conference 2007

Working with Post-Link Code Coverage

�At the high level same as in regular code coverage
�The new methodology provides a compiler

transformations dictionary to help with:
�White lines – not in the code

�Due to compiler optimization
�No need for additional tests to cover these lines

�Yellow lines – partially covered
�Due to the translation of language constructs (e.g.

switch statement)
�Due to compiler optimization

IBM Labs in Haifa

© 2007 IBM Corporation	� Haifa Verification Conference 2007

Understanding Coverage – Macro Example
Partial coverage

IBM Labs in Haifa

© 2007 IBM Corporation	� Haifa Verification Conference 2007

Understanding Coverage - If Example
Partial coverage

IBM Labs in Haifa

© 2007 IBM Corporation	� Haifa Verification Conference 2007

Understanding Coverage - If Example (cont)
Partial coverage

IBM Labs in Haifa

© 2007 IBM Corporation	� Haifa Verification Conference 2007

�Motivation: integrating coverage along the entire
development process
�More constraints as we approach shipment
�And beyond – at the customer site

�Post link – a better starting point
�Works on optimized code
�Lend itself for reducing instrumentation overhead

�Only covered/no-covered is needed
�Using self modifying instrumentation

Low Overhead Instrumentation at Post-Link

IBM Labs in Haifa

© 2007 IBM Corporation	� Haifa Verification Conference 2007

Low Overhead Instrumentation - Results

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
vg

er
ag

e

E
xe

cu
ti

o
n

 T
im

e
O

ve
rh

ea
d

 (
%

)

Function Level

Basic Block Level SPECfp2000

-6
-4
-2
0
2
4
6
8

10
12
14
16

b
zi

p
2

cr
af

ty

eo
n

g
ap g
cc

g
zi

p

m
cf

p
ar

se
r

p
er

lb
m

k

tw
o

lf

vp
r

A
vg

er
ag

e

E
xe

cu
ti

o
n

 T
im

e
O

ve
rh

ea
d

 (
%

) SPECint2000
Linux on
POWER

gcc 4.1 –O3

Using
Self-modifying

Code

Average

INT: 4% / 0.9%

FP: 0.4% / -1.4%

IBM Labs in Haifa

© 2007 IBM Corporation	� Haifa Verification Conference 2007

Conclusion
�Post-link code coverage is useful

�Can be mapped back to source code
�Enables compiler optimization
�Supported by compiler transformation dictionary

� In some cases post-link code coverage is better
�Enables integrating coverage in the development

process
�Near shipment and beyond

�More flexible for low overhead instrumentation
�Future work - enhancing the visual aids to improve the

understanding of more complex compiler optimizations

IBM Labs in Haifa

© 2007 IBM Corporation	� Haifa Verification Conference 2007

Questions ?

FoCuS: www.alphaworks.ibm.com/tech/focus

FDPR-Pro: www.haifa.il.ibm.com/projects/systems/cot/fdpr

IBM Labs in Haifa

© 2007 IBM Corporation�
 Haifa Verification Conference 2007

Line Number Information and optimization

�GCC man
“Unlike most other C compilers, GCC allows you to
use `-g' with `-O‘”

�xlc man
“If you specify the -qlinedebug option, the inlining
option defaults to -Q! (no functions are inlined).”
But inline can be forced and the line-number info
will be correct

