The Advantages

of
Post-link Code Coverage

Orna Raz, Moshe Klausner, Nitzan Peleg, Gad
Haber, Eitan Farchi, Shachar Fienblit, Yakov
Filiarsky, Shay Gammer and Sergey Novikov

IBM Labs in Haifa © 2006 IBM Corporation

What is Code Coverage?

© A quality measurement used in software testing

© A quantitative way to describe the degree to which
the source code of a program has been tested

® Feedback for improving the tests

© 2007 IBM Corporation

@ | IBM Labs in Haifa

How is Code Coverage Done?

® Via instrumentation
® Adding additional code to collect coverage data
® Introduce overhead on execution time

@ Source level instrumentation is the common practice
@ Instrumentation done during compilation

© For example gnu tools
@ gcc/geov — compilation + instrumentation
@ Icov — for analysis

Haifa Verification Conference 2007 © 2007 IBM Corporation

Common Code Coverage Process
Obtain Code Coverage Data Analyze Code Coverage

ompilation +
Instrumentation

Haifa Verification Conference 2007 © 2007 IBM Corporation

Post Link Code Coverage Process
Obtain Code Coverage Data Analyze Code Coverage

ompilation

nstrumentation

Haifa Verification Conference 2007 © 2007 IBM Corporation

Motivation for Post-Link Instrumentation

® Challenging architectures like kernel & embedded systems

® The current solutions (e.g. GCOV) may not address all the
issues

® No OS facilities
® Non-terminating code

@ Integrate code coverage in all tests along the entire
development cycle

® Same tests for coverage and functional

® Enables accumulation of coverage data between phases
As a result, coverage:

® is done on actual (optimized) code (e.g. SVT)

® instrumentation must have low overhead
® The tests cycle period should be reasonable
® The behavior should not be affected (e.g. time outs)

Haifa Verification Conference 2007 © 2007 IBM Corporation

Post-link Code Coverage Characteristics

© Works on the running code and does not interfere
with compiler optimizations

© The coverage data is influenced by the compiler
transformation and optimization

@ Different from source level coverage
@ More information available

© Enables further reduction in instrumentation
overhead

Haifa Verification Conference 2007 © 2007 IBM Corporation

Our Post Link Code Coverage Process
Obtain Code Coverage Data Analyze Code Coverage

FDPR-Pro.
Instrumentation

Haifa Verification Conference 2007 © 2007 IBM Corporation

FoCuS can work with gcov as well (and more)
Obtain Code Coverage Data Analyze Code Coverage

gcov
Instrumentation

Haifa Verification Conference 2007 © 2007 IBM Corporation

Raw Coverage Information From FDPR-Pro

.Perl_do_chop { function } (size = 632)
safe bb size = 60 func = .Perl_do_chop (prolog)@t = 2@

0x1000b6c8: 0x7c0802a6 mflr r0 ; doop.c:215
0x1000b6cc: 0xfb61ffd8 std r27,-40(rl) G_doop.c:215

!!!!!!!

safe bb size = 16 func = .Perl_do_chop <ount = U
0x1000b74c: 0xe8828440 1d r4,-31680(r2) ; doop.c:2561
0x1000b750: 0x7£f63db78 or r3,r27,r27 ; doop.c:2561
0x1000b754: 0x38a00000 1i r5,0 <::§°°P'°j§§z:>
0x1000b758: 0x48076901 bl 0x1007fddc ; doop.c:2b61

Basic Block — stream of instructions with one entry and one
exit with no control flow in the middle

Haifa Verification Conference 2007 © 2007 IBM Corporation

FoCuS’ Source View with Post-link Mapping

switch (a) {
case 1:

break;
case 2:

break

case N:

break; White — no matching BB
default:

break; Yellow — Partially
covered, matches to
covered and non-
covered BBs

Haifa Verification Conference 2007 © 2007 IBM Corporation

Working with Post-Link Code Coverage

© At the high level same as in regular code coverage

© The new methodology provides a compiler
transformations dictionary to help with:
® White lines — not in the code
< Due to compiler optimization
© No need for additional tests to cover these lines
@ Yellow lines — partially covered

< Due to the translation of language constructs (e.g.
switch statement)

® Due to compiler optimization

Haifa Verification Conference 2007 © 2007 IBM Corporation

Understanding Coverage — Macro Example
Partial coverage

398 if (mg = SvTIED_mg((SV*)av, 'P’)) {
399 dSP;

410 return;
411 }

(a) Source code using the SvTIED_mg

#define SvTIED_mg(sv,how) (SYRMAGICAL(sv) ? mg_find((sv),(how)) : Null(MAGIC*))

(b) The SvTIED_mg macro which uses the ? operator and calls other macros

Haifa Verification Conference 2007 © 2007 IBM Corporation

Understanding Coverage - If Example
Partial coverage

176 if (*name == "'+’ && len>1 && name[len-1] I=*\|") { /* scary */

179 writing = 1:
180 }

Haifa Verification Conference 2007 © 2007 IBM Corporation

@ | IBM Labs in Haifa

Understanding Coverage - If Example (cont)
Partial coverage

179 writing = 1;
180-1 }

180-2 }

180-3 }

Haifa Verification Conference 2007 © 2007 IBM Corporation

Low Overhead Instrumentation at Post-Link
© Motivation: integrating coverage along the entire
development process
® More constraints as we approach shlpment
® And beyond — at the customer site
© Post link — a better starting point
® Works on optimized code

® Lend itself for reducing instrumentation overhead

© Only covered/no-covered is needed
® Using self modifying instrumentation

Haifa Verification Conference 2007 © 2007 IBM Corporation

@ | IBM Labs in Haifa

Low Overhead Instrumentation - Results

16

21 SPECint2000

10

Linux on
POWER

gcc 4.1 -03

Execution Time Overhead (%

Using
Self-modifying
Code

- Average

= [T O
INT: 49% /
I SPECfp2000

FP: 0.4% /

Execution Time Overhead (%)

© 2007 IBM Corporation

Conclusion
® Post-link code coverage is useful

® Can be mapped back to source code

® Enables compiler optimization

® Supported by compiler transformation dictionary
© In some cases post-link code coverage is better

® Enables integrating coverage in the development
process

© Near shipment and beyond
«® More flexible for low overhead instrumentation

© Future work - enhancing the visual aids to improve the
understanding of more complex compiler optimizations

Haifa Verification Conference 2007 © 2007 IBM Corporation

Questions ?

FoCuS: www.alphaworks.ibm.com/tech/focus

FDPR-Pro: www.haifa.il.ibom.com/projects/systems/cot/fdpr

Haifa Verification Conference 2007 © 2007 IBM Corporation

Line Number Information and optimization

©® GCC man
“Unlike most other C compilers, GCC allows you to

use -g' with -O
© xlc man

“If you specify the -qlinedebug option, the inlining

option defaults to -Q! (no functions are inlined).”

But inline can be forced and the line-number info

will be correct

© 2007 IBM Corporation

