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The Verisoft Project

• Funded by the German government
• Partners from industry and academia
• Goal: pervasively verify four computer

systems, three of which in industrial context
 improve quality, increase productivity

• Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive
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Outline

• Verisoft Systems and System Layers

• Verified Stacks
◦ Computational Models Stack
◦ Semantics Stack
◦ Example

• Verisoft Repository and Publication

• Conclusion
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SP2 Verisoft Academic System

• Scenario: general-purpose computer system

• Hardware, microkernel, operating system,
applications

• Services: user processes may use file I/O, IPC,
networking via sockets, and RPC

• Application example: everything required to write,
sign, send, and receive email
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SP4 Verisoft Biometric Identification System

• Scenario: biometric sensor used to authenticate user
against biometric reference data stored on smartcard

• Biometric data must be protected (according to
German privacy regulations)

• Cryptographic protocol between smartcard and
system
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SP6 Verisoft Automotive System

• Scenario: distributed system of electronic control
units (ECUs) communicating over time-triggered bus

• Applications (seem to) use shared variables to
communicate

• Application example: automatic emergency call
! Clock synchronization and WCET analysis required
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Implementation Languages and Layers

SP2 Academic System / SP4 CBI:

Apps
Userland
System software

SOS
User mode
System mode

VAMOSMachine-indep.

Machine-dep.
CVM

Software
Hardware

VAMP
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Implementation Languages and Layers
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System Verification Recipe

Using appropriate formal specification & proof tools:
1. specify layers and languages used in the system
2. specify and verify algorithms used by the tool chain

(or, alternatively, validate their output)
3. prove simulation statements between layers, arguing

about the programs residing at the different layers

All of this should enable to transfer correctness results for
top-layer programs to their bottom-layer representation
( obtain: verified stack).
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Computational Models

• Language models
◦ Register-transfer language
◦ Machine language, assembler
◦ C0, a type-safe, Pascal-like subset of C

• Device models
◦ DFAs modeling device behavior
◦ Interact with the local system and an external

environment
◦ Timing: mostly abstracted; use external environment

also to introduce non-determinism
! But not for the automotive system. . .

• Both types of models specified by next-state
functions of the form δ(in, c) = (c′, out) (small steps!)
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Computational Models (cont.)

• Build system / layer models from previous models

• Multiple copies of models may be involved
(many devices; virtualisation of resources)

• Concurrency (or even parallelism) is involved
(device communication; interprocess communication)

Proc
Mem.
Bus

D1

...

Dn

Ext.
Env.

IRQ

• Distributed models: connect via external environment
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Semantics Stack for C0

• How to prove implementation of a layer correct wrt its
model? Small-steps, concurrent semantics too
cumbersome to use!

• Stack of C0 semantics formalized in Isabelle/HOL
◦ Machine-level small steps semantics (memory layout)
◦ Small steps semantics
◦ Big steps semantics
◦ Axiomatic semantics / C0 Hoare logics (with VCG)

• Layers in semantics stack related to each other via
equivalence results

 Use C0 Hoare logics for the bulk of verification work;
integrate automatic proof tools into C0 Hoare logics.
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Example: Page Fault Handler Verification I

• Memory virtualisation via demand paging
• Implemented in C0 and assembler (swap access)

• Verification of the C0 part
◦ Verify in sequential C0 Hoare logics enriched with

axiomatic semantics for swap memory access
◦ Transfer down to the C0 big-steps level
◦ Transfer down to the C0 small-steps level

• Verification of page in / out operations
◦ Verify in assembler model with a hard disk
◦ Generalize to model with other devices (trace

reordering required!)
◦ Wrap as C0 functions, verify wrapper (does not

interfere with regular C0 small steps)
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Example: Page Fault Handler Verification II
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Repository Implementation and Structure

• Internally, we manage
◦ documentations,
◦ specifications,
◦ implementations,
◦ proofs, and
◦ (proof) tools

of Verisoft project partners in a standard VCS.
( concurrent development, continuous integration
and testing)

• Everything is organized in modules, which have
dependencies (‘X needs / builds upon on Y’).
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Repository Realization
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Repository Publication

• Goal: make stable, self-contained snapshots of
non-confidential parts of the internal repository
available publicly.

• Currently published:
◦ Code verification of a doubly-linked list library
◦ Code verification of a string library
◦ Code verification of the Verisoft email client
◦ Code verification of a big integer library
◦ Code verification of the C0 compiler

(includes: assembler and C0 small-steps semantics)
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Repository Publication

www.verisoft.de/VerisoftRepository.html
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Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .
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Conclusion

• Verisoft: verification of entire systems of industrial
interest

• System verification environment / repository:
◦ Contains all artifacts needed for the verification
◦ Architecture largely determined by structure of

implementation and its tool chain

• Two verified stacks:
◦ computational models (often concurrent, small steps)
◦ semantics (increase verification productivity)

• Repository snapshots: www.verisoft.de
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