On the Architecture of
System Verification Environments

Mark A. Hillebrand® Wolfgang J. Paul?

LGerman Research for Artificial Intelligence (DFKI), Saarbriicken, Germany

2Department of Computer Science, Saarland University, Saarbriicken, Germany

Haifa Verification Conference, 2007

* Funded by the German government
* Partners from industry and academia

* Goal: pervasively verify four computer
systems, three of which in industrial context
~» improve quality, increase productivity

* Funded by the German government
* Partners from industry and academia

* Goal: pervasively verify four computer
systems, three of which in industrial context
~» improve quality, increase productivity
* Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive

* Funded by the German government
* Partners from industry and academia

* Goal: pervasively verify four computer
systems, three of which in industrial context
~» improve quality, increase productivity
* Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive

* Funded by the German government
* Partners from industry and academia

* Goal: pervasively verify four computer
systems, three of which in industrial context
~» improve quality, increase productivity
* Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive

* Funded by the German government
* Partners from industry and academia

* Goal: pervasively verify four computer
systems, three of which in industrial context
~» improve quality, increase productivity
* Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive

e —
* Verisoft Systems and System Layers

* Verified Stacks
o Computational Models Stack
o Semantics Stack
o Example

* Verisoft Repository and Publication

e Conclusion

=N

 Scenario: general-purpose computer system

=N

applications

* Scenario: general-purpose computer system
* Hardware, microkernel, operating system,

D
=N

 Scenario: general-purpose computer system

* Hardware, microkernel, operating system,
applications

* Services: user processes may use file I/O, IPC,
networking via sockets, and RPC

A2 N4

u]
)]
I
ul
it

INTERNET

D D
e N

Scenario: general-purpose computer system
Hardware, microkernel, operating system,
applications

Services: user processes may use file 1/0, IPC,
networking via sockets, and RPC

Application example: everything required to write,
sign, send, and receive email

u]
)]

I

ul
it
N
el
Q

* Scenario: biometric sensor used to authenticate user
against biometric reference data stored on smartcard

* Scenario: biometric sensor used to authenticate user
against biometric reference data stored on smartcard

system

* Biometric data must be protected (according to
German privacy regulations)
* Cryptographic protocol between smartcard and

u]
‘)]
I
ul
it

A2 N4

Hac

Apps Apps
ECU ECU — Déj\@i'
Buslf Buslf

shared serial bus
* Scenario: distributed system of electronic control

units (ECUs) communicating over time-triggered bus

Apps Apps
ECU ECU
Buslf Buslf

shared serial bus
* Scenario: distributed system of electronic control

units (ECUs) communicating over time-triggered bus

* Applications (seem to) use shared variables to
communicate

* Application example: automatic emergency call

Apps Apps
ECU ECU
Buslf Buslf

shared serial bus

* Scenario: distributed system of electronic control
units (ECUs) communicating over time-triggered bus

Applications (seem to) use shared variables to
communicate

Application example: automatic emergency call
! Clock synchronization and WCET analysis required

[m} = =

SP2 Academic System / SP4 CBI:

Apps

Userland - =
S f

ystem software SOS
Usermode —————
System mode
Machine-indep. VAMOS
Machine-dep. ——~o—

achine-dep CUM
Software

SP2 Academic System / SP4 CBI:

Apps

Userland - =
S f

ystem software SOS
Usermode —————
System mode
Machine-indep. VAMOS
Machine-dep. ——~o—

achine-dep CUM
Software

SP2 Academic System / SP4 CBI:

Apps

Userland - =
S f

ystem software SOS
Usermode —————
System mode
Machine-indep. VAMOS
Machine-dep. ——~o—

achine-dep CUM
Software

SP2 Academic System / SP4 CBI:

Apps

Userland - =
S f

ystem software SOS
Usermode —————
System mode
Machine-indep. VAMOS
Machine-dep. ——~o—

achine-dep CUM
Software

SP2 Academic System / SP4 CBI:

Apps

Userland - =
S f

ystem software SOS
Usermode —————
System mode
Machine-indep. VAMOS
Machine-dep. ——~o—

achine-dep CUM
Software

SP2 Academic System / SP4 CBI:

Apps
Userland L7 e
Syst f
ystem software SOS
Usermode ~ ———— |\
System mode External
Machine-indep. VAMOS environment;
‘Machine-dep. —— | | 7| other
Software CVM systems

Hard
ware VAMP Devices

SP6 Automotive System:

Userland

System software
User mode

System mode
Machine-indep.

Machine-dep.
Software

Devices

External
environment;
other
systems

Using appropriate formal specification & proof tools:
1. specify layers and languages used in the system
2. specify and verify algorithms used by the tool chain
(or, alternatively, validate their output)
3. prove simulation statements between layers, arguing
about the programs residing at the different layers

e —
Using appropriate formal specification & proof tools:
1. specify layers and languages used in the system

2. specify and verify algorithms used by the tool chain
(or, alternatively, validate their output)

3. prove simulation statements between layers, arguing
about the programs residing at the different layers

All of this should enable to transfer correctness results for

top-layer programs to their bottom-layer representation
(~ obtain: verified stack).

* Language models
° Register-transfer language
© Machine language, assembler
° C0, a type-safe, Pascal-like subset of C

* Language models

° Register-transfer language

© Machine language, assembler

° C0, a type-safe, Pascal-like subset of C
* Device models

© DFAs modeling device behavior

° Interact with the local system and an external
environment

° Timing: mostly abstracted; use external environment
also to introduce non-determinism

! But not for the automotive system...

* Language models

° Register-transfer language

© Machine language, assembler

° C0, a type-safe, Pascal-like subset of C
* Device models

° DFAs modeling device behavior

° Interact with the local system and an external
environment

° Timing: mostly abstracted; use external environment
also to introduce non-determinism
! But not for the automotive system...
* Both types of models specified by next-state
functions of the form §(in, ¢) = (¢, out) (small steps!)

=} = = = E DaA®

* Build system / layer models from previous models

e —
* Build system / layer models from previous models
* Multiple copies of models may be involved
(many devices; virtualisation of resources)

* Concurrency (or even parallelism) is involved

(device communication; interprocess communication)

* Build system / layer models from previous models

* Multiple copies of models may be involved
(many devices; virtualisation of resources)

* Concurrency (or even parallelism) is involved
(device communication; interprocess communication)

5 "IRQ | o

I : I Dl I :

| ' ; : Ext.
| Proc| | | : Lo

1 ! T - T

| : Mem. . : : Env.
| ! Bus Dy, v

o <P - - = 9ac

* Build system / layer models from previous models

* Multiple copies of models may be involved
(many devices; virtualisation of resources)

* Concurrency (or even parallelism) is involved
(device communication; interprocess communication)

5 "IRQ | o
I : I Dl I :
| ' ; : Ext.
i | Proc : i . 1 1
| ' Mem. | _E_E_)Env'
| . Bus | D, v

* How to prove implementation of a layer correct wrt its
model? Small-steps, concurrent semantics too
cumbersome to use!

* How to prove implementation of a layer correct wrt its
model? Small-steps, concurrent semantics too
cumbersome to use!

e Stack of C'0 semantics formalized in Isabelle/HOL

© Machine-level small steps semantics (memory layout)
© Small steps semantics

° Big steps semantics
° Axiomatic semantics / C0 Hoare logics (with VCG)
* Layers in semantics stack related to each other via
equivalence results

~ Use C0 Hoare logics for the bulk of verification work;
integrate automatic proof tools into C'0 Hoare logics.

e —
* Memory virtualisation via demand paging
* Implemented in CO and assembler (swap access)

e —
* Memory virtualisation via demand paging
* Implemented in CO and assembler (swap access)
* Verification of the CO part

o Verify in sequential CO Hoare logics enriched with
axiomatic semantics for swap memory access
o Transfer down to the CO big-steps level
o Transfer down to the CO small-steps level

* Memory virtualisation via demand paging

* Implemented in CO and assembler (swap access)
* Verification of the CO part
o Verify in sequential CO Hoare logics enriched with
axiomatic semantics for swap memory access
o Transfer down to the CO big-steps level
o Transfer down to the CO small-steps level
* Verification of page in / out operations
° Verify in assembler model with a hard disk
© Generalize to model with other devices (trace
reordering required!)
° Wrap as CO functions, verify wrapper (does not
interfere with regular CO small steps)

[m] [= =

DA

Simpl
C0-Machine
combined system

PFH abstract

transition system
eXtended CO

USEr processes

Surddew
uonoeInsqe SSOUOQII0D IOALIP

o o) O-————- -0
A A

Om..muﬁoohm.
Jo11dwod

O O O-—————- O
3[oEIS SONUBWIAS ()) uone[nuIIs

* Internally, we manage

documentations,
specifications,
implementations,
proofs, and
(proof) tools

of Verisoft project partners in a standard VCS.
(~» concurrent development, continuous integration
and testing)

O O O O O

* Internally, we manage

© documentations,
o specifications,

° implementations,
° proofs, and

° (proof) tools

of Verisoft project partners in a standard VCS.
(~» concurrent development, continuous integration
and testing)

* Everything is organized in modules, which have
dependencies (‘X needs / builds upon on Y’).

* Internally, we manage

© documentations,

o specifications,

° implementations, modules
° proofs, and

° (proof) tools

of Verisoft project partners in a standard VCS.
(~» concurrent development, continuous integration
and testing)

* Everything is organized in modules, which have
dependencies (‘X needs / builds upon on Y’).

aroroumTvon
B | insmnisorn
fiir Bildung
und Forschung

Isabelle

libisa
Nusty.

IHavelt

simpliy

swmc

ACSAR

Bohne

ame3.

Hoare
libHoare

cocheck

stdinclude

rpegen

Verisoft Repository Modules and Their Def d

Maintainer

Verification Environment
StefanBerghofer
TobiasNipkow
Makariuswenzel

Isabelle Theorem /tools/isabelle
ver

Isabelle Lemma verffication/libisa

ibrary
NUSMV model tools/NusHy (third party)
checker

Isabelle Hardware tools/IHavelt SergeyTverdyshev
Verfication

Infrastructure
Simplify theorem tools/simpliy (third party)
e

r
Hoare Logic tools/swmc StefanMaus
Software Model

Checker Interface

Automatic 100IS/ACSAR NassimSeghir
Checker of Safety

Properties Base

on Abstraction

Refinement
Pointer ftools/Bohne Thomaswies
Verification /
Shape Analysis
Tool
Termination ftools/armc3 AndreyRybalchenko
Checker
Hoare Logic /tools/Hoare Norbertschimer
Hoare Logic /lverification/libHoare
Uibrary

Development Environment / Tool Chain
DLX Assembler /tools/dixasm Markkilebrand
DLX Simulator /tools/dixsim MarkHillebrand
€O checker and /tools/cOcheck DirkLeinenbach
preprocessor emstarostin
Standard C
include Files
505 RPC Interface/tools/pcgen Andreyshadrin

Generator

InformationDependencie:
Isabelle

Isabelle
NuSHv

simplify

simplfy

Isabelle

icocompiler
idlist
istring

iibpm
ilbsos

= = E =

A2 N4

* Goal: make stable, self-contained snapshots of
non-confidential parts of the internal repository
available publicly.

* Goal: make stable, self-contained snapshots of
non-confidential parts of the internal repository
available publicly.

 Currently published:

Code verification of a doubly-linked list library

Code verification of a string library

Code verification of the Verisoft emalil client

Code verification of a big integer library

Code verification of the CO compiler

(includes: assembler and CO small-steps semantics)

O O O O O

ERORERTYOM
Bundesministerium

fiir Bildung
und Forschung

» Home
» Consortium
> Project Structure
> Goals and Results
> SPL: Methods and Tools
> SP2: Academic System

> SP3: Correct Industrial
Hardware/Software-System

> SPa: Blometric Identfication
System

P SPS: Project Management
> SP6: Automotive
> Verisoft Repository

» publications

> press

» Contact

> internal

> Auf Deutsch, Bitte!

Verisoft Repository

In the Verisoft project, the formal pervasive verffication of four exemplary computer systems, three of which come from the industrial
sector, is attempted, The layers, which are considered, range from the gate-level hardware over system software to communicating
and distributed applications.

The Verisoft Reposiary allows to concurrently develop the many indidual resuls that cortribute to the overall vefication resuts and
to manage them in a tractable mann

In the repository, the artefacts developed by the project partners are being collected as modules and related to each other via
Modules include proofs, and tools for

In the end, the repository must be the set given computer system under verfication must allow

2 to buld an executable mplementation of that system and
= to prove its top-evel correctne:

Gurently, substarital pats of the Versoftthearies and systems have been imported into the Verisof repository and the repository s
being used for further developmer

At this location, portions of the interal Verisoft repository that appear sufficiently stable and do not contain confidential data of
industry partners, wil be published.

Publications
® uString-4-111594.tar.gz (1,8M) — Code-Level Verfication of a String Library (14 Dec 2006)
This release contains the code-evel verfication o 2 doublyinked s brary and strng ibrary, the implementation language s

the Clie programming language CO. The verification is done ed’interactive software verification
environment for the theorem proving CPranment 5516, which alte nclgeq

= vemalltrunker1 5868.tar.gz (3.6M) — Code-Level Verification of an Email Client (18 May 2007)

Thi release contains the codeevel verfcation of the emal client of Subroject 2 Acaderic Syster relatve to the senices
prowided by the simple operating system (505) and applications fo signing and email transter, The implementation languag
fre""Clike” programming 1anguage. CO. The verfiction 15 done I & Hoare ogic-based mteractne. software venfication
environment for the thearem prowng envronment Isapelle.

= wbigint trunker19285 tar.gz (2.2M) — Code-Level Verification of a Big Integer Library (10 October 2007)

s release contains the coderevelverfication of bg Infeger braryused n Scbprect 2 Academc Sisten and Subproject &
Biometric s. The language is the Clike
programming language cn The venﬂ:mmn < done In' Hoated logic- hased | \meramve software verification environment for the
theorem proving environment Isabelle.

www.verisoft.de/VerisoftRepository.html

o (w1 =

A2 N4

www.verisoft.de/VerisoftRepository.html

ERORERTYOM
Bundesministerium

fiir Bildung
und Forschung

Verisoft Repository Publication: CO Compiler Code Verification
vcOcompiler-trunk-r19956

The Verisoft Project

Verisoft is a long term research project funded by the German Federal Ministry of Education and Research (bmb+f), Project management agency is the German
Aerospace Center (DIR)

Tne main goal ofthe project s the pervasive fomal verfiction of computer systems. Verisoftreuls cluding mplementations and formal corectnecs proofs)
appear sufficiently stabl Y oneain onfantal dore of Iiatry parrere, are. bemg PUblohed on tna JomCoR webpage Thg code v hnctonal
verification of a compiler for & ik Tanguags. contained herein. 1 the fourth raisase of that kind. -

Overview

Verisoft's sub project 2 deals with the formal pervasive verification of a general-purpose computer system from gate-level hardware, to system software, and
communicating applications. All code is implemented in the programming language CO. which is a subset of C. However, software verffication in Verisoft does not stop
at the CO level. To allow execution of verfied programs on the rea hardware they must be compied to binary code, This translation could el ntroduce errors into
an otherwise verified C o Tt e eaon, of the Tankiaion pracees 1o GotHiE Tor BanSe Syetom wErcation whoh. the System.Sowre. and
SPoictons are SYRITeNed 1 8 Faevel rogamig IanGubge

have verified a simple non-optimizing CO compiler. For pervasive verification it is not sufficient to have a verfied code generation algorithm (also called compiling
specification). We also need a verfied compiler implementation in CO (excluding parsing phase or /0 operations) which allows us (after boot strapping) to execute a
verified compiler binary on the target platform, After verifying the correctness of the compiling specification it is sufficient to show that the compiler implementation
produces the same code as the compiling specification.

Here, we include only the compiler implementation and the corresponding correctness proofs. The correctness proof for the compiling specification will be published
in an upcoming Verisoft repository release,

In addition to the compiler of the addiional brares for stings and st are also includd here; lease ses the
Dreuiout epostary retasas CaEm eSS o 5 o he ool RepeSany oo cavenng inase verfestion

The verification of the compiler implementation is done in a Hoare logic verffication environment, which is implemented in the theorem prover Isabelle/HOL. For this
purpose, the CO implementations (in concrete syntax) are transiated into their Hoare logic representation; the transiator itself is also part of this release (cocheck),
Based on this representation, Hoare triples for total and partial correctness are proven, supported by a verfication condition generator. Additionall, the absence of
certain runtime errors is shown (e.g. integer overflows and out-of-bounds array access). Absence of runtime errors is necessary (among other things), o translate
the total correctness results down to lower-level semantics, i.. end to the compiled program running on the target architecture,

2 mentioned above, the verfied implemertation of the €O compier lacks a front-end and output foutines. These are also Implemented In the unverfied cocheck
tool

The files in this release are placed in a number of directories, which we also call modules. The following graph lists the modules present in this release and also
indicates the dependencies between the modules; the top-level module corresponds to the top-level resuts, i.e., the code verffication of the CO compiler,

=} = = E E DaA®

Ovel

Verisoft's sub project 2 deals with the formal pervasive verification of a general-purpose computer system from gate-level hardware, to system software, and
communicating applications. Al code s mplemented n th programming language CO, Which s subset of C. However, software verfication n Verisoft does not stop
at the CO level. To allow execution of verified programs on the real hardware they must be compiled to binary code, This translation could itself introduce errors into
an otherwise verified CO program. Thus, verffication of the translation process is essential for pervasive system verification when the system software and
SPplications ars mplementad ih 3 high vl programming lanauage.

have vertied a simple non-optiming CO compiler, For pervasie verfication f is ot suffcent to have verfied cade genaration algortthm (also called compiing
et We e ebq 3 Yared cormior Eopermontoson m CO.(exucing paraing shase or 10 Speratione) which Slowe s (sl 0ot St1abIG) o Svecate
Verfied compir binary on tha target piatform. ARar veriying the correctnass of the compiing speciication K 1s suficient to show that the compter Implementation
produces the same code as the complling specfication.

Here, we include only the compiler implementation and the corresponding correctness proofs. The correctness proof for the compiling specification will be published
in an upcoming Verisoft repository release,

In addition to the compiler implementation, the implementation and verification of the additional libraries (for strings and lists) are also included here; please see the
previous repository release (vString-4-711594 tar.z on the Verisoft Repository page) covering these verifications.

The verification of the compiler implementation is done in a Hoare logic verffication environment, which is implemented in the theorem prover Isabelle/HOL. For this
purpose, the CO implementations (In concrete syntax) are transiated into their Hoare logic representation; the transiator itself is also part of this release (cGcheck)
Based on this representation, Hoare triples for total and partial correctness are proven, supported by a verfication condition generator. Additionally, the absence of
Certain runfime Srrors is Shown (6.3, INEager overflows 8nd out-of bounds artay Bccess). Absence of runime srrars 3 necessary (among other tAGS). to transiate
the total correctness results down to lower-level semantics, end to the compiled program running on the target architecture,

As mentioned above, the verffied implementation of the CO compiler lacks a front-end and output routines. These are also implemented in the unverified cocheck
ool.

The fles in this relsass are placed in s number of drectories, which wa also call modues, The folowing graph sts the modules presert In this release and siso
indicates the dependencies between the modules; the top-level module corresponds to the top-level resul the code verification of the CO compller.

Liverification

T — e p—
/
A
/
/
[
/r///
AP
| me;s/cucheck_‘ LibHoars Cosynta
|

= DA

icOcompiler
I_

Estring

|M,

icOcompiler		vc0compi	er
iString		vString	
idust		vdList	

stdinclude

| icOcompiler |<—|vc0compiler|

| iString |<——| vString |
! i
| idiist [~ vdList |
!

stdinclude

| icOcompiler |<—|vc0compiler|

| iString I I vString |

!
| idiist [~ vdList |

| stdinclude | | COHoare |

| icOcompiler |<—|vc0compiler|

| iString I I vString |
1
| idiist [~ vdList |
| stdinclude | | COHoare |

| icOcompiler |<—|vc0compiler|—
L L

| iString I I vString |
1
| idiist [~ vdList |
| stdinclude | | COHoare |

COcodegen

| icOcompiler |<—|vc0compiler|—
L L
| iString I I vString |
1

!
| iduist |+ vdList || VAMPasm || coss |

| stdinclude | | COHoare |

| icOcompiler |<—|vc0compiler|—
L L

| iString I I
1
| idList |

lt—H vdList
| stdinclude |

|| vaMPasm || coss |
|
| COHoare |

vString |

COcodegen

* Theorem: Compiler implementation produces the
same code than a code generation algorithm

Dependencies’ Example: Compiler
e e
[istring J«+—{ vstring | @l
|¢idList kt—H vdList || vAMPasm || coss |
| stdinclude | | CoHoare | l

* Theorem: Compiler implementation produces the
same code than a code generation algorithm

* Theorem: Generated code simulates CO computation

(part of an upcoming Verisoft repository release)
=] [= E E Qe
- onifeAWc ol bystom Verelion Evironments piz/ie

| icOcompiler |<—|vc0compiler|—
L L

‘Cocompsim;
| istring [++—H vString | Cocodegen
|¢idList kt—H vdList || vAMPasm || coss |
| stdinclude | | CoHoare |

* Theorem: Compiler implementation produces the
same code than a code generation algorithm

* Theorem: Generated code simulates CO computation
(part of an upcoming Verisoft repository release)

* To use that theorem (e.g., bootstrap): more nodes. .
o = = =

A2 N4

e —
* Verisoft: verification of entire systems of industrial
interest
* System verification environment / repository:

o Contains all artifacts needed for the verification

implementation and its tool chain

° Architecture largely determined by structure of
* Two verified stacks:

° computational models (often concurrent, small steps)
© semantics (increase verification productivity)
* Repository snapshots: www.verisoft.de

www.verisoft.de

	Verisoft Systems and System Layers
	Verified Stacks
	Computational Models Stack
	Semantics Stack
	Example

	Verisoft Repository and Publication
	Conclusion

