
On the Architecture of
System Verification Environments

Mark A. Hillebrand1 Wolfgang J. Paul2

1German Research for Artificial Intelligence (DFKI), Saarbrücken, Germany

2Department of Computer Science, Saarland University, Saarbrücken, Germany

Haifa Verification Conference, 2007



The Verisoft Project

• Funded by the German government
• Partners from industry and academia
• Goal: pervasively verify four computer

systems, three of which in industrial context
 improve quality, increase productivity

• Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive

On the Architecture of System Verification Environments – p. 2 / 18



The Verisoft Project

• Funded by the German government
• Partners from industry and academia
• Goal: pervasively verify four computer

systems, three of which in industrial context
 improve quality, increase productivity

• Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive

On the Architecture of System Verification Environments – p. 2 / 18



The Verisoft Project

• Funded by the German government
• Partners from industry and academia
• Goal: pervasively verify four computer

systems, three of which in industrial context
 improve quality, increase productivity

• Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive

On the Architecture of System Verification Environments – p. 2 / 18



The Verisoft Project

• Funded by the German government
• Partners from industry and academia
• Goal: pervasively verify four computer

systems, three of which in industrial context
 improve quality, increase productivity

• Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive

On the Architecture of System Verification Environments – p. 2 / 18



The Verisoft Project

• Funded by the German government
• Partners from industry and academia
• Goal: pervasively verify four computer

systems, three of which in industrial context
 improve quality, increase productivity

• Six sub projects:
SP1 Tools and methods
SP2 Academic System
SP3 Processor and system-on-chip
SP4 Chipcard-based biometric identification system
SP5 Project management
SP6 Automotive

On the Architecture of System Verification Environments – p. 2 / 18



Outline

• Verisoft Systems and System Layers

• Verified Stacks
◦ Computational Models Stack
◦ Semantics Stack
◦ Example

• Verisoft Repository and Publication

• Conclusion

On the Architecture of System Verification Environments – p. 3 / 18



SP2 Verisoft Academic System

• Scenario: general-purpose computer system

• Hardware, microkernel, operating system,
applications

• Services: user processes may use file I/O, IPC,
networking via sockets, and RPC

• Application example: everything required to write,
sign, send, and receive email

On the Architecture of System Verification Environments – p. 4 / 18



SP2 Verisoft Academic System

• Scenario: general-purpose computer system
• Hardware, microkernel, operating system,

applications

• Services: user processes may use file I/O, IPC,
networking via sockets, and RPC

• Application example: everything required to write,
sign, send, and receive email

On the Architecture of System Verification Environments – p. 4 / 18



SP2 Verisoft Academic System

• Scenario: general-purpose computer system
• Hardware, microkernel, operating system,

applications
• Services: user processes may use file I/O, IPC,

networking via sockets, and RPC

• Application example: everything required to write,
sign, send, and receive email

On the Architecture of System Verification Environments – p. 4 / 18



SP2 Verisoft Academic System

THE
INTERNET

• Scenario: general-purpose computer system
• Hardware, microkernel, operating system,

applications
• Services: user processes may use file I/O, IPC,

networking via sockets, and RPC
• Application example: everything required to write,

sign, send, and receive email

On the Architecture of System Verification Environments – p. 4 / 18



SP4 Verisoft Biometric Identification System

• Scenario: biometric sensor used to authenticate user
against biometric reference data stored on smartcard

• Biometric data must be protected (according to
German privacy regulations)

• Cryptographic protocol between smartcard and
system

On the Architecture of System Verification Environments – p. 5 / 18



SP4 Verisoft Biometric Identification System

• Scenario: biometric sensor used to authenticate user
against biometric reference data stored on smartcard

• Biometric data must be protected (according to
German privacy regulations)

• Cryptographic protocol between smartcard and
system

On the Architecture of System Verification Environments – p. 5 / 18



SP6 Verisoft Automotive System

• Scenario: distributed system of electronic control
units (ECUs) communicating over time-triggered bus

• Applications (seem to) use shared variables to
communicate

• Application example: automatic emergency call
! Clock synchronization and WCET analysis required

On the Architecture of System Verification Environments – p. 6 / 18



SP6 Verisoft Automotive System

Apps

ECU

BusIf
. . .

Apps

ECU

BusIf
shared serial bus

• Scenario: distributed system of electronic control
units (ECUs) communicating over time-triggered bus

• Applications (seem to) use shared variables to
communicate

• Application example: automatic emergency call
! Clock synchronization and WCET analysis required

On the Architecture of System Verification Environments – p. 6 / 18



SP6 Verisoft Automotive System

Apps

ECU

BusIf
. . .

Apps

ECU

BusIf
shared serial bus

• Scenario: distributed system of electronic control
units (ECUs) communicating over time-triggered bus

• Applications (seem to) use shared variables to
communicate

• Application example: automatic emergency call

! Clock synchronization and WCET analysis required

On the Architecture of System Verification Environments – p. 6 / 18



SP6 Verisoft Automotive System

Apps

ECU

BusIf
. . .

Apps

ECU

BusIf
shared serial bus

• Scenario: distributed system of electronic control
units (ECUs) communicating over time-triggered bus

• Applications (seem to) use shared variables to
communicate

• Application example: automatic emergency call
! Clock synchronization and WCET analysis required

On the Architecture of System Verification Environments – p. 6 / 18



Implementation Languages and Layers

SP2 Academic System / SP4 CBI:

Apps
Userland
System software

SOS
User mode
System mode

VAMOSMachine-indep.

Machine-dep.
CVM

Software
Hardware

VAMP

On the Architecture of System Verification Environments – p. 7 / 18



Implementation Languages and Layers

SP2 Academic System / SP4 CBI:

Apps
Userland
System software

SOS
User mode
System mode

VAMOSMachine-indep.

Machine-dep.
CVM

Software
Hardware

VAMP

On the Architecture of System Verification Environments – p. 7 / 18



Implementation Languages and Layers

SP2 Academic System / SP4 CBI:

Apps
Userland
System software

SOS
User mode
System mode

VAMOSMachine-indep.

Machine-dep.
CVM

Software
Hardware

VAMP

On the Architecture of System Verification Environments – p. 7 / 18



Implementation Languages and Layers

SP2 Academic System / SP4 CBI:

Apps
Userland
System software

SOS
User mode
System mode

VAMOSMachine-indep.

Machine-dep.
CVM

Software
Hardware

VAMP

On the Architecture of System Verification Environments – p. 7 / 18



Implementation Languages and Layers

SP2 Academic System / SP4 CBI:

Apps
Userland
System software

SOS
User mode
System mode

VAMOSMachine-indep.

Machine-dep.
CVM

Software
Hardware

VAMP

On the Architecture of System Verification Environments – p. 7 / 18



Implementation Languages and Layers

SP2 Academic System / SP4 CBI:

Apps
Userland
System software

SOS
User mode
System mode

VAMOSMachine-indep.

Machine-dep.
CVM

Software
Hardware

VAMP Devices

External
environment;

other
systems

On the Architecture of System Verification Environments – p. 7 / 18



Implementation Languages and Layers

SP6 Automotive System:

Apps
Userland
System software
User mode
System mode

OLOSMachine-indep.

Machine-dep.
CVM

Software
Hardware

VAMP Devices

External
environment;

other
systems

On the Architecture of System Verification Environments – p. 7 / 18



System Verification Recipe

Using appropriate formal specification & proof tools:
1. specify layers and languages used in the system
2. specify and verify algorithms used by the tool chain

(or, alternatively, validate their output)
3. prove simulation statements between layers, arguing

about the programs residing at the different layers

All of this should enable to transfer correctness results for
top-layer programs to their bottom-layer representation
( obtain: verified stack).

On the Architecture of System Verification Environments – p. 8 / 18



System Verification Recipe

Using appropriate formal specification & proof tools:
1. specify layers and languages used in the system
2. specify and verify algorithms used by the tool chain

(or, alternatively, validate their output)
3. prove simulation statements between layers, arguing

about the programs residing at the different layers

All of this should enable to transfer correctness results for
top-layer programs to their bottom-layer representation
( obtain: verified stack).

On the Architecture of System Verification Environments – p. 8 / 18



Computational Models

• Language models
◦ Register-transfer language
◦ Machine language, assembler
◦ C0, a type-safe, Pascal-like subset of C

• Device models
◦ DFAs modeling device behavior
◦ Interact with the local system and an external

environment
◦ Timing: mostly abstracted; use external environment

also to introduce non-determinism
! But not for the automotive system. . .

• Both types of models specified by next-state
functions of the form δ(in, c) = (c′, out) (small steps!)

On the Architecture of System Verification Environments – p. 9 / 18



Computational Models

• Language models
◦ Register-transfer language
◦ Machine language, assembler
◦ C0, a type-safe, Pascal-like subset of C

• Device models
◦ DFAs modeling device behavior
◦ Interact with the local system and an external

environment
◦ Timing: mostly abstracted; use external environment

also to introduce non-determinism
! But not for the automotive system. . .

• Both types of models specified by next-state
functions of the form δ(in, c) = (c′, out) (small steps!)

On the Architecture of System Verification Environments – p. 9 / 18



Computational Models

• Language models
◦ Register-transfer language
◦ Machine language, assembler
◦ C0, a type-safe, Pascal-like subset of C

• Device models
◦ DFAs modeling device behavior
◦ Interact with the local system and an external

environment
◦ Timing: mostly abstracted; use external environment

also to introduce non-determinism
! But not for the automotive system. . .

• Both types of models specified by next-state
functions of the form δ(in, c) = (c′, out) (small steps!)

On the Architecture of System Verification Environments – p. 9 / 18



Computational Models (cont.)

• Build system / layer models from previous models

• Multiple copies of models may be involved
(many devices; virtualisation of resources)

• Concurrency (or even parallelism) is involved
(device communication; interprocess communication)

Proc
Mem.
Bus

D1

...

Dn

Ext.
Env.

IRQ

• Distributed models: connect via external environment

On the Architecture of System Verification Environments – p. 10 / 18



Computational Models (cont.)

• Build system / layer models from previous models
• Multiple copies of models may be involved

(many devices; virtualisation of resources)
• Concurrency (or even parallelism) is involved

(device communication; interprocess communication)

Proc
Mem.
Bus

D1

...

Dn

Ext.
Env.

IRQ

• Distributed models: connect via external environment

On the Architecture of System Verification Environments – p. 10 / 18



Computational Models (cont.)

• Build system / layer models from previous models
• Multiple copies of models may be involved

(many devices; virtualisation of resources)
• Concurrency (or even parallelism) is involved

(device communication; interprocess communication)

Proc
Mem.
Bus

D1

...

Dn

Ext.
Env.

IRQ

• Distributed models: connect via external environment

On the Architecture of System Verification Environments – p. 10 / 18



Computational Models (cont.)

• Build system / layer models from previous models
• Multiple copies of models may be involved

(many devices; virtualisation of resources)
• Concurrency (or even parallelism) is involved

(device communication; interprocess communication)

Proc
Mem.
Bus

D1

...

Dn

Ext.
Env.

IRQ

• Distributed models: connect via external environment

On the Architecture of System Verification Environments – p. 10 / 18



Semantics Stack for C0

• How to prove implementation of a layer correct wrt its
model? Small-steps, concurrent semantics too
cumbersome to use!

• Stack of C0 semantics formalized in Isabelle/HOL
◦ Machine-level small steps semantics (memory layout)
◦ Small steps semantics
◦ Big steps semantics
◦ Axiomatic semantics / C0 Hoare logics (with VCG)

• Layers in semantics stack related to each other via
equivalence results

 Use C0 Hoare logics for the bulk of verification work;
integrate automatic proof tools into C0 Hoare logics.

On the Architecture of System Verification Environments – p. 11 / 18



Semantics Stack for C0

• How to prove implementation of a layer correct wrt its
model? Small-steps, concurrent semantics too
cumbersome to use!

• Stack of C0 semantics formalized in Isabelle/HOL
◦ Machine-level small steps semantics (memory layout)
◦ Small steps semantics
◦ Big steps semantics
◦ Axiomatic semantics / C0 Hoare logics (with VCG)

• Layers in semantics stack related to each other via
equivalence results

 Use C0 Hoare logics for the bulk of verification work;
integrate automatic proof tools into C0 Hoare logics.

On the Architecture of System Verification Environments – p. 11 / 18



Example: Page Fault Handler Verification I

• Memory virtualisation via demand paging
• Implemented in C0 and assembler (swap access)

• Verification of the C0 part
◦ Verify in sequential C0 Hoare logics enriched with

axiomatic semantics for swap memory access
◦ Transfer down to the C0 big-steps level
◦ Transfer down to the C0 small-steps level

• Verification of page in / out operations
◦ Verify in assembler model with a hard disk
◦ Generalize to model with other devices (trace

reordering required!)
◦ Wrap as C0 functions, verify wrapper (does not

interfere with regular C0 small steps)

On the Architecture of System Verification Environments – p. 12 / 18



Example: Page Fault Handler Verification I

• Memory virtualisation via demand paging
• Implemented in C0 and assembler (swap access)
• Verification of the C0 part

◦ Verify in sequential C0 Hoare logics enriched with
axiomatic semantics for swap memory access

◦ Transfer down to the C0 big-steps level
◦ Transfer down to the C0 small-steps level

• Verification of page in / out operations
◦ Verify in assembler model with a hard disk
◦ Generalize to model with other devices (trace

reordering required!)
◦ Wrap as C0 functions, verify wrapper (does not

interfere with regular C0 small steps)

On the Architecture of System Verification Environments – p. 12 / 18



Example: Page Fault Handler Verification I

• Memory virtualisation via demand paging
• Implemented in C0 and assembler (swap access)
• Verification of the C0 part

◦ Verify in sequential C0 Hoare logics enriched with
axiomatic semantics for swap memory access

◦ Transfer down to the C0 big-steps level
◦ Transfer down to the C0 small-steps level

• Verification of page in / out operations
◦ Verify in assembler model with a hard disk
◦ Generalize to model with other devices (trace

reordering required!)
◦ Wrap as C0 functions, verify wrapper (does not

interfere with regular C0 small steps)

On the Architecture of System Verification Environments – p. 12 / 18



Example: Page Fault Handler Verification II

eXtended C0

PFH abstract 
transition system

C0-Machine

si
m

ul
at

io
n

co
m

pi
le

r
co

rr
ec

tn
es

s
driver
XCall

dr
iv

er
  c

or
re

ct
ne

ss

C
0 

se
m

an
ti

cs
 s

ta
ck

Simpl

ab
st

ra
ct

io
n 

m
ap

pi
ng

combined system

user processes

reorder

On the Architecture of System Verification Environments – p. 13 / 18



Repository Implementation and Structure

• Internally, we manage
◦ documentations,
◦ specifications,
◦ implementations,
◦ proofs, and
◦ (proof) tools

of Verisoft project partners in a standard VCS.
( concurrent development, continuous integration
and testing)

• Everything is organized in modules, which have
dependencies (‘X needs / builds upon on Y’).

On the Architecture of System Verification Environments – p. 14 / 18



Repository Implementation and Structure

• Internally, we manage
◦ documentations,
◦ specifications,
◦ implementations,
◦ proofs, and
◦ (proof) tools

of Verisoft project partners in a standard VCS.
( concurrent development, continuous integration
and testing)

• Everything is organized in modules, which have
dependencies (‘X needs / builds upon on Y’).

On the Architecture of System Verification Environments – p. 14 / 18



Repository Implementation and Structure

• Internally, we manage
◦ documentations,
◦ specifications,
◦ implementations,

 modules
◦ proofs, and
◦ (proof) tools

of Verisoft project partners in a standard VCS.
( concurrent development, continuous integration
and testing)

• Everything is organized in modules, which have
dependencies (‘X needs / builds upon on Y’).

On the Architecture of System Verification Environments – p. 14 / 18



Repository Realization

On the Architecture of System Verification Environments – p. 15 / 18



Repository Publication

• Goal: make stable, self-contained snapshots of
non-confidential parts of the internal repository
available publicly.

• Currently published:
◦ Code verification of a doubly-linked list library
◦ Code verification of a string library
◦ Code verification of the Verisoft email client
◦ Code verification of a big integer library
◦ Code verification of the C0 compiler

(includes: assembler and C0 small-steps semantics)

On the Architecture of System Verification Environments – p. 16 / 18



Repository Publication

• Goal: make stable, self-contained snapshots of
non-confidential parts of the internal repository
available publicly.

• Currently published:
◦ Code verification of a doubly-linked list library
◦ Code verification of a string library
◦ Code verification of the Verisoft email client
◦ Code verification of a big integer library
◦ Code verification of the C0 compiler

(includes: assembler and C0 small-steps semantics)

On the Architecture of System Verification Environments – p. 16 / 18



Repository Publication

www.verisoft.de/VerisoftRepository.html

On the Architecture of System Verification Environments – p. 16 / 18

www.verisoft.de/VerisoftRepository.html


Repository Publication

On the Architecture of System Verification Environments – p. 16 / 18



Repository Publication

On the Architecture of System Verification Environments – p. 16 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

vc0compiler

vString

vdList
?

?

?

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

vc0compiler

vString

vdList
?

?

?

�

�

�

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

vc0compiler

vString

vdList
?

?

?

�

�

�

???
C0Hoare

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

vc0compiler

vString

vdList
?

?

?

�

�

�

???
C0Hoare

?
Isabellex

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

vc0compiler

vString

vdList
?

?

?

�

�

�

???
C0Hoare

?
Isabelle

- C0codegen

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

vc0compiler

vString

vdList
?

?

?

�

�

�

???
C0Hoare

?
Isabelle

- C0codegen

C0SS

C0Syntax

VAMPasm
??

?

?

?

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

vc0compiler

vString

vdList
?

?

?

�

�

�

???
C0Hoare

?
Isabelle

- C0codegen

C0SS

C0Syntax

VAMPasm
??

?

?

?

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

vc0compiler

vString

vdList
?

?

?

�

�

�

???
C0Hoare

?
Isabelle

- C0codegen

C0SS

C0Syntax

VAMPasm
??

?

?

?

C0compsim

?

?

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Dependencies’ Example: Compiler

ic0compiler

iString

idList

stdinclude
??

?

?

?

?

vc0compiler

vString

vdList
?

?

?

�

�

�

???
C0Hoare

?
Isabelle

- C0codegen

C0SS

C0Syntax

VAMPasm
??

?

?

?

C0compsim

?

?

x

• Theorem: Compiler implementation produces the
same code than a code generation algorithm

• Theorem: Generated code simulates C0 computation
(part of an upcoming Verisoft repository release)

• To use that theorem (e.g., bootstrap): more nodes. . .

On the Architecture of System Verification Environments – p. 17 / 18



Conclusion

• Verisoft: verification of entire systems of industrial
interest

• System verification environment / repository:
◦ Contains all artifacts needed for the verification
◦ Architecture largely determined by structure of

implementation and its tool chain

• Two verified stacks:
◦ computational models (often concurrent, small steps)
◦ semantics (increase verification productivity)

• Repository snapshots: www.verisoft.de

On the Architecture of System Verification Environments – p. 18 / 18

www.verisoft.de

	Verisoft Systems and System Layers
	Verified Stacks
	Computational Models Stack
	Semantics Stack
	Example

	Verisoft Repository and Publication
	Conclusion

