Test Case Generation for Ultimately Periodic Paths

Saddek Bensalem, Doron Peled, Hongyang Qu, Stavros Tripakis, Lenore Zuck

Outline

- Background (flow charts, path preconditions)
- Conditions for ultimately periodic paths
- Test case generation methodology
- Implementation
- Conclusion

Flow Charts

- A graphical representation of structure of a program
- Three kinds of nodes
 - Ellipse (beginning, end)
 - Box (assignment)
 - Diamond (condition)
- Two kinds of edges
 - Outgoing from ellipse or box nodes (no labels)
 - Outgoing from diamond nodes (labelled as yes or no)

An example

Program 1

```
while (x<=y && z>0) {
  y := y / 2;
  x := x * 2;
  z := z - 1;
}
```

Program 2

```
while (x>=y) {
  x := x - 1;
  y := y + 1;
  z := z * 2
}
```


Path conditions

• A path condition $\wp_{\mu}(\varphi)$ is a first order predicate that expresses the condition to execute the path μ and satisfy the predicate φ at the end of the execution.

• Sometime we write \wp_{μ} for $\wp_{\mu}(true)$.

Computing path conditions

$$\varphi[e/x]$$

$$x := e$$

$$\varphi$$

Properties of path conditions

Compositionality

$$\wp_{\sigma\rho}(\varphi) = \wp_{\sigma}(\wp_{\rho}(\varphi))$$

Distribution over conjunction

$$\wp_{\mu}(\varphi \wedge \psi) = \wp_{\mu}(\varphi) \wedge \wp_{\mu}(\psi)$$

Monotonicity

if
$$\varphi \rightarrow \psi$$
 then $\wp_{\mu}(\varphi) \rightarrow \wp_{\mu}(\psi)$

How to calculate a path condition for an ultimately periodic path?

- This is the subject of this work.
- In general this is an undecidable problem.

Some conditions for ultimately periodic paths

- Equality condition
 computed using equality method
- Monotonicity condition computed using monotonicity method
- Condition for not completely ultimately periodic paths

Equality method

- We are looking for the condition to execute a loop ρ indefinitely, after a finite prefix σ , where in each iteration, the variables obtain the same values.
- Executing the periodic part ρ once when $\wp_{\rho} \wedge X = tr_{\rho}(X)$.
- Executing it after the prefix σ is when $\wp_{\sigma\rho} \wedge \wp_{\sigma}(\wp_{\rho} \wedge X = tr_{\rho}(X))$.
- Simplifying: $\wp_{\sigma\rho} \wedge \wp_{\sigma}(X = tr_{\rho}(X))$.

Example (1)

Monotonicity Method

- It is sufficient to find a loop invariant such that $I \to \wp_{\rho}(I)$.
- The weakest such invariant I is $I = \wp_o(true)$.
- Proof:

```
I \to true \, 	ext{ for each } I. By monotonicity of \wp, \wp_{\rho}(I) \to \wp_{\rho}(true). Since I \to \wp_{\rho}(I), it holds that I \to \wp_{\rho}(true), independently of I.
```

Deriving an ultimately periodic condition

- We set $I = \wp_{\rho}(true)$ in the implication $I \to \wp_{\rho}(I)$, obtaining $\wp_{\rho}(true) \to \wp_{\rho}(\wp_{\rho}(true))$.
- This can be rewritten as $\wp_{\rho}(true) \rightarrow \wp_{\rho}(true)[tr_{\rho}(X)/X]$.
- Applying the \mathscr{D} of the prefix, we obtain $\mathscr{D}_{\sigma}(\mathscr{D}_{\rho}(true)) \to \mathscr{D}_{\sigma}(\mathscr{D}_{\rho}(true)[tr_{\rho}(X)/X])$.
- The next slide will deal with the 2nd bullet (and then we need to remember to apply the 3rd).

The case where $\wp_{\rho}(true)$ is $e \ge 0$ (or e > 0)

- Set $e' = e[tr_{\rho}(X)/X]$.
- Bullet 2 from previous slide becomes $e \ge 0 \rightarrow e' \ge 0$.
- A *sufficient* condition is $e' \ge e$.
- Other cases: when we have a condition $\wp_{\rho}(true) \equiv g \geq f$, we take e = g f.
- **Conjunction principle**: In case $\wp_{\rho}(true) \equiv g \ge 0 \land f \ge 0$, we have condition $g' \ge g \land f' \ge f$.
- **Disjunction principle**: In case $\wp_{\rho}(true) \equiv g \ge 0 \lor f \ge 0$, it is sufficient that we strengthen to either $g \ge g$ or $f \ge f$.
- An equality can be transformed into two inequalities and the disjunction case is applied.

Example (2)

Some mixed and not completely ultimately periodic paths

```
While x>1 do
   begin
           if PowerTwo(x-1) then
                      x:=4*(x-1)
           else
                      x := x - 1
    end.
Example: 4 \rightarrow 3 \rightarrow 8 \rightarrow 7 \rightarrow 6 \rightarrow 5 \rightarrow 16 \rightarrow 15...
```

Computing the condition

• Shrinking the loo body to a new transition *t*:

$$\wp_{\sigma i}(\varphi) = \bigvee_{i} (c_{i} \wedge \wp_{\sigma}(\varphi)[\overline{e}_{i} / \overline{x}_{i}])$$

• Example:

$$t: \text{PowerTwo}(x-1) \mapsto x := 4(x-1) \oplus \neg \text{PowerTwo}(x-1) \mapsto x := x-1$$

$$\wp_{\sigma} = (\text{PowerTwo}(x-1) \land 4(x-1) > 1) \lor (\neg \text{PowerTwo}(x-1) \land x - 1 > 1)$$

$$\wp_{\sigma t} \rightarrow x > 1$$

Test case generation

Goals

- Verification of software.
- Compositional verification. Use only a unit of code instead of the whole code.
- Parameterized verification. Verifies a procedure with any value of parameters in "one shot"
- Generating test cases via *path conditions*: A truth assignment satisfying the path condition. Helps derive the demonstration of errors.
- Generating appropriate values to missing parameters.

How to generate test cases

- Take the intersection of an LTL automaton with the flow graph.
 Some paths would be eliminated for not satisfying the assertions on the program counters.
- Seeing same flow chart node does not mean a loop: program variables may value. Use iterative deepening.
- For each initial path calculate the path condition. Backtrack if condition simplifies to false.
- Report path condition based on flow graph path+LTL assertions.
- Always simplify conditions!

intersection of the property

How the LTL formula directs the search

• Spec: $(x = 4)U(x = 5 \land O...)$

Implementation

- Implemented in Java
- Using Mathematica to simplify conditions.
- Detecting identical states
- Heuristic match

Conclusion

- An approach for generating test cases automatically.
- Also: verification of infinite state systems.
- Path by path verification rather than state by state.
- Challenge: the weakest precondition for ultimately periodic sequences in infinite state systems.
- We suggested several methods (e.g., the equality and monotonicity methods, etc.)
- Not all of the infinite executions are ultimately periodic.