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Flow Charts

A graphical representation of structure of a program
Three kinds of nodes

e Ellipse (beginning, end)
e Box (assignment)
e Diamond (condition)

Two kinds of edges
e Outgoing from ellipse or box nodes (no labels)
e Outgoing from diamond nodes (labelled as yes or no)
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An example

* Program 1
while (x<=y && z>0) {

Y=y 2,
Wit %ok
2oy s
}
® Program 2 —
while (x>=y) { |
X:=x-1;
Vel .
7 =7%9 nrex e
} \\

Frz=z-1
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Path conditions

A path condition g, (@) is a first order predicate that
expresses the condition to execute the path pand
satisty the predicate ¢ at the end of the execution.

Sometime we write o, for g (true).
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Computing path conditions

@ AC ,=YI2<X<yAz>0
1 I

yeS(p yes X2 y/2

@ A—C y=y/2
2. <:> X2y

nogp XZy

ole/ X yes true
3 x:ie X=x-1

% \ @ =1rue
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Properties of path conditions

Compositionality

Pop (P) = 5 (6,(9))
Distribution over conjunction

P ory)=p, () rp,W)
Monotonicity

It o >y thenp, (9) >0, V)
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~ How to calculate a path condition

for an ultimately periodic path?
* This is the subject of this work.

* In general this is an undecidable problem.
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~-Some conditm

periodic paths

Equality condition

computed using equality method
Monotonicity condition

computed using monotonicity method

Condition for not completely ultimately periodic paths
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"Equality method

We are looking for the condition to execute a loop p
indefinitely, after a finite prefix o, where in each iteration,
the variables obtain the same values.

Executing the periodic part p once when g, A X =1r (X).

Executing it after the prefix o is when

o N2, A X =1r (X))

Simplifying: ¢, A0, (X =1r (X)).
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Example (1)

3X+2
X:

=720

.

P (2=0Ay=X)=2-1=0AYy=X
£, (true) =x>0

X>0AZ-1=0AYy=X

33X+ 7

. L)
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o
Monotonicity Method

It is sufficient to find a loop invariant such that | — g (1).

The weakest such invariant I is| = g _(true).

Proof:

| > true foreachl.
By monotonicity of o, (1) — g, (true).
Since | — @ (1), it holds that | — @ (true),
independently of |.
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“Deriving an ultimately periodic

condition

Weset | = @ (true)in the implication | — @ (1),
obtaining (@ (true) — @ (g, (true)).

This can be rewritten as g (true) — o (true)[tr,(X)/ X].

Applying the  of the prefix, we obtain
9. (9, (true)) — o, (¢, (true)[tr, (X)/ X]) .

The next slide will deal with the 274 bullet (and then we
need to remember to apply the 39).
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“The case where g (true) is €20 (or

e>0)

Sete'=eftr, (X)/ X].
Bullet 2 from previous slide becomese >0 —>¢e'>0.
A sufficient condition is e'> €.

Other cases: when we have a conditiong (true)=g > f,
we takee=qg — f.

Conjunction principle: In case @ - (true)=g=>0Af >0,
we have Cond1t10ng >gnf'>f

Disjunction principle: In case o (true) = 9 >0v f >0,
it is sufficient that we strengthen to either g'>gor f'> f.

An equality can be transformed into two inequalities and
the disjunction case is applied.
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Example (2)

AN L7
B Gt 750 )

@, (true) =x>0=

(X,Y,2)

9. (@,) > p,(p,ltr,(X)/ X]) =
X>0Az>1
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~-Some mixed and not completely

ultimately periodic paths

While x>1 do
begin
If PowerTwo(x-1) then
X.:=4*(x-1)
else
X:=X-1
end.
Example: 42328272625216215...
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Computing the condition

Shrinking the loo body to a new transition t:

(@) = \i/(Ci Ao ()& %])
Example:

t:PowerTwo(x—1) — X =4(x—1) ®—-PowerTwo(x—1) > X :=x-1
¢ = (PowerTwo(x—1) A4(x—1) >1) v (—PowerTwo(x—-1) Ax—-1>1)

-
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Test case generation

Transitions

24/10/2007 Hongyang Qu, Imperial College London 18



/ —

/

Goals

Verification of software.

Compositional verification. Use only a unit of code
instead of the whole code.

Parameterized verification. Verifies a procedure with
any value of parameters in “one shot”

Generating test cases via path conditions: A truth
assignment satisfying the path condition. Helps derive
the demonstration of errors.

Generating appropriate values to missing parameters.
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How to generate test cases

Take the intersection of an LTL automaton with the
flow graph.

Some paths would be eliminated for not satisfying the
assertions on the program counters.

Seeing same flow chart node does not mean a loop:
program variables may value. Use iterative deepening.

For each initial path calculate the path condition.
Backtrack if condition simplifies to false.

Report path condition based on flow graph path+LTL
assertions.

Always simplify conditions!
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ersection of the property

automaton and flow graph
X>Y

24/10/2007 Hongyang Qu, Imperial College London



/\—/

| How the LTL formula directs the search

* Spec: (X=4)U(x=5A0...)

3
4

X
X
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Implementation

Implemented in Java

Using Mathematica to simplify conditions.
Detecting identical states

Heuristic match
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Conclusion

An approach for generating test cases automatically.

Also: verification of infinite state systems.
Path by path verification rather than state by state.

Challenge: the weakest precondition for ultimately periodic
sequences in infinite state systems.

We suggested several methods (e.g., the equality and
monotonicity methods, etc.)

Not all of the infinite executions are ultimately periodic.
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