
Saddek Bensalem, Doron Peled, Hongyang
Qu, Stavros Tripakis, Lenore Zuck

Haifa Verification Conference, 2007

Outline
 Background (flow charts, path preconditions)

 Conditions for ultimately periodic paths

 Test case generation methodology

 Implementation

 Conclusion

24/10/2007 2Hongyang Qu, Imperial College London

Flow Charts
 A graphical representation of structure of a program

 Three kinds of nodes

 Ellipse (beginning, end)

 Box (assignment)

 Diamond (condition)

 Two kinds of edges

 Outgoing from ellipse or box nodes (no labels)

 Outgoing from diamond nodes (labelled as yes or no)

24/10/2007 3Hongyang Qu, Imperial College London

An example

 Program 1
while (x<=y && z>0) {

y := y / 2;

x := x * 2;

z := z – 1;

}

 Program 2
while (x>=y) {

x := x - 1;

y := y + 1;

z := z * 2

}

24/10/2007 Hongyang Qu, Imperial College London 4

Path conditions
 A path condition is a first order predicate that

expresses the condition to execute the path μ and
satisfy the predicate φ at the end of the execution.

 Sometime we write for .

24/10/2007 Hongyang Qu, Imperial College London 5

)(

)(true

Computing path conditions

1.

2.

3.

24/10/2007 6Hongyang Qu, Imperial College London

c

yes


c

c

no


c

ex :



]/[xe

true

trueyes

0 zyx

yx 

2/: yy 

1:  xx

yes

yx 

2/yx 

02/  zyxy

Properties of path conditions
 Compositionality

 Distribution over conjunction

 Monotonicity

24/10/2007 Hongyang Qu, Imperial College London 7

))(()(  

)()()(  

)()(then if   

How to calculate a path condition
for an ultimately periodic path?
 This is the subject of this work.

 In general this is an undecidable problem.

24/10/2007 Hongyang Qu, Imperial College London 8

Some conditions for ultimately
periodic paths
 Equality condition

computed using equality method

 Monotonicity condition

computed using monotonicity method

 Condition for not completely ultimately periodic paths

24/10/2007 Hongyang Qu, Imperial College London 9

Equality method

 We are looking for the condition to execute a loop ρ
indefinitely, after a finite prefix σ, where in each iteration,
the variables obtain the same values.

 Executing the periodic part ρ once when .

 Executing it after the prefix σ is when

.

 Simplifying: .

24/10/2007 10Hongyang Qu, Imperial College London

)(XtrX  

))((XtrX  

))((XtrX  

Example (1)

24/10/2007 Hongyang Qu, Imperial College London 11

yes

0x

xy :

3

)2(
:

zyx
x




1:  zz

true

true

true

0x

0x

0x

),,(zyx

),,
3

3
(zx

zx 

xyxy

z
zx

x






 0
3

3




0)(

01)0(





xtrue

xyzxyz





xyzx  010

Monotonicity Method
 It is sufficient to find a loop invariant such that .

 The weakest such invariant I is .

 Proof:
for each .

By monotonicity of , .

Since , it holds that ,
independently of .

24/10/2007 12Hongyang Qu, Imperial College London

)(II 

)(trueI 

trueI  I
)()(trueI  

)(II )(trueI 
I

Deriving an ultimately periodic
condition
 We set in the implication ,

obtaining .

 This can be rewritten as .

 Applying the of the prefix, we obtain
.

 The next slide will deal with the 2nd bullet (and then we
need to remember to apply the 3rd).

24/10/2007 Hongyang Qu, Imperial College London 13

)(trueI )(II 
))(()(truetrue  

]/)()[()(XXtrtruetrue  



])/)()[(())((XXtrtruetrue  

The case where is e≥0 (or
e>0)
 Set .

 Bullet 2 from previous slide becomes .

 A sufficient condition is .

 Other cases: when we have a condition ,
we take .

 Conjunction principle: In case ,
we have condition .

 Disjunction principle: In case ,
it is sufficient that we strengthen to either or .

 An equality can be transformed into two inequalities and
the disjunction case is applied.

24/10/2007 Hongyang Qu, Imperial College London 14

]/)([' XXtree 
0'0  ee

ee '
fgtrue )(

fge 

00)( fgtrue

ffgg  ''

00)( fgtrue

gg ' ff '

)(true

Example (2)

24/10/2007 Hongyang Qu, Imperial College London 15

yes

0x

xy :

3

)2(
:

zyx
x




1:  zz

true

true

true

0x

0x

0x

),,(zyx

),,
3

3
(zx

zx 





0
3

3
0)(


 zx

zx
xtrue

10

])/)([()(





zx

XXtr 

Some mixed and not completely
ultimately periodic paths

While x>1 do

begin

if PowerTwo(x-1) then

x:=4*(x-1)

else

x:=x-1

end.

Example: 4387651615…

24/10/2007 16Hongyang Qu, Imperial College London

Computing the condition
 Shrinking the loo body to a new transition t:

 Example:

24/10/2007 Hongyang Qu, Imperial College London 17

])/)[(()(iii
i

t xec    

1:)1PowerTwo()1(4:)1PowerTwo(:  xxxxxxt 

)11)1PowerTwo(()1)1(4)1(PowerTwo( xxxxt

1 xt

Test case generation

24/10/2007 18Hongyang Qu, Imperial College London

Compiler
Model

Checker
Path condition

calculation

First order
instantiator

Test
monitoring

Transitions

Path
Flow
chart

LTL  Automaton

Goals
 Verification of software.

 Compositional verification. Use only a unit of code
instead of the whole code.

 Parameterized verification. Verifies a procedure with
any value of parameters in “one shot”

 Generating test cases via path conditions: A truth
assignment satisfying the path condition. Helps derive
the demonstration of errors.

 Generating appropriate values to missing parameters.

24/10/2007 Hongyang Qu, Imperial College London 19

How to generate test cases
 Take the intersection of an LTL automaton with the

flow graph.
Some paths would be eliminated for not satisfying the
assertions on the program counters.

 Seeing same flow chart node does not mean a loop:
program variables may value. Use iterative deepening.

 For each initial path calculate the path condition.
Backtrack if condition simplifies to false.

 Report path condition based on flow graph path+LTL
assertions.

 Always simplify conditions!

24/10/2007 Hongyang Qu, Imperial College London 20

intersection of the property
automaton and flow graph

24/10/2007 Hongyang Qu, Imperial College London 21

¬at l2

at l2˄
xy

¬at l2

at l2˄
x2y

l2:x:=x+z

l3:x<t

l1:…

X
=

l2:x:=x+z

l3:x<t

l2:x:=x+z

xy

x2y

at l2

¬at l2

at l2

How the LTL formula directs the search

 Spec:

24/10/2007 Hongyang Qu, Imperial College London 22

...)5()4( xUx

x=4

x=5

x<5

x:=x+1y:=7

truefalse

x=4

x<5

x=4

x:=x+1

x=4

x=5

Implementation
 Implemented in Java

 Using Mathematica to simplify conditions.

 Detecting identical states

 Heuristic match

24/10/2007 Hongyang Qu, Imperial College London 23

Conclusion
 An approach for generating test cases automatically.

 Also: verification of infinite state systems.

 Path by path verification rather than state by state.

 Challenge: the weakest precondition for ultimately periodic
sequences in infinite state systems.

 We suggested several methods (e.g., the equality and
monotonicity methods, etc.)

 Not all of the infinite executions are ultimately periodic.

24/10/2007 Hongyang Qu, Imperial College London 24

