A Complete Bounded Model Checking
Algorithm for Pushdown Systems

Gérard Basler
Daniel Kroening

Georg Weissenbacher

LTI o
—c,

— ot Lo ._. :
|._.;I: — v

r:..-"

Abstract-Verify-Refine Paradigm (CEGAR)

4 H

concrete transition system abstract states abstract transitions

spurious counterexample refinement check new abstraction

Predicate Abstraction

Preserves control flow structure
Tracks facts in the program using predicates
Generates pushdown systems

What can a Pushdown System do?

Finite number of variables, all of them Boolean
Global state and stack

(Recursive) function calls

Only head visible (global variables + top of stack)

——————

Transitions

(D, 71) — (@:72)

T —

T
e

Y2

Assignment / Assumption: Modify head
Call: Modify head and push new element on stack

Return: Modify global variables and pop topmost
stack element

Model Checking Pushdown
Systems

Reachability of locations in sequential pushdown systems
(PDS) is decidable

Symbolic model checkers based on BDDs: Bebop, Moped

BDD-based techniques don‘t scale for large number of
variables

Observations:
Location reachable in few steps
=» Bounded Model Checking

If error location unreachable in original program: Location
reachable in PDS in every iteration but the last

A transition sequence

Symbolic transition sequence
Relates first and last state of a path

o V! A Vo

— [2 R Cop= N T o

Laq CLO) bib \ajaq) ! \apag) ' \aq aO) N
190 V4 S /7o

R [p o g P A] ’ a1 a(}/ b1bg al q9) b b g

Symbolic summarization

Key idea to check reachability in pushdown
systems (Bebop, Moped)

Only finite number of possible input / output pairs

Fixed-point check for SAT/QBF-based
summarization:

Rnew € Rorp?

V<p(), ’YO>7 <p67 76> E|<p17 71>7 <p/1771>

| VA L | If'_.-' VR
Ryewl /[0, P/ %]_ Rorp [Plm |y PU o

Universal Summaries

Universal summary provides a summary for
any arbitrary entry state

“calling context” unconstrained

Su({p,), (0, 7"))
<

El<p17 ’IU1>, IR <pn7 wn>
<p7 7> — <p17w1> e T <pn7wn> — <p,77,>A
Vi € {1.n}.|w;| > 2

Constructing Universal Summaries
using BMC

BMC: when to stop unrolling?

Unroll up to longest path that doesn’t visit any
state twice

All states in the path are pairwise different
350,51,52,53 . 50 # S1AS0#S2AS0+#S3AS1#S2...

Eager approach

Eager application of universal summaries
leads to large formulas

Worst case: exponential number of unrollings
Predicate abstraction:

If property holds: Location reachable in every iteration but
the last. SLAM: up to 20 iterations until location
unreachable

Over-Approximations for summaries

Over-approximation:

true)
. S/

— -

If location unreachable in over-approximation,
then location is unreachable in original PDS

Abstraction and Refinement with
Summaries

Spurious paths

Refine transition system until feasible path found or head
unreachable

Fall back to QBF algorithm, if computation of universal summary
not possible

R”O;n3 R”O;n3

EFP+ Time [s]

Benchmarks

1000 ¢
100 |
]
|
10 t -
O
] o] o
4
1F =]
[i ! o
o~ i QB % o =
O
0.1}
I::l.[:ll L A 1 L L P | L " P | " L P | 1
0.01 0.1 1 10 100 1000
BF Time [s]

X = location reachable

Bebop Time [=]

I 1
1000 b
i
100 L
%
10 L y
o
0
1 L
P4
i1
% % o ;
o 8o o] o]
o1 L
|:|.|:|1 1 1 1 P | 1
0.01 0.1 1 10 100 1000)

Benchmarks

X = location reachable BP% Time [=]

Conclusion

BMC based method superior to BDD-based
model checking if location reachable

BDD-based and bounded model checker can be
run in parallel

Improve heuristics for constructing universal
summaries and refinement

Backup slides

[i<5]

PredicateAbstraction

i=0;

[i>=5]

int 1=0;
do {

assert (i < 10);

i++;

fwhile (i < 5);

PredicateAbstraction

i>10
int 1=0;
do {
assert (i < 10);
[-b,]

i++;

fwhile (i < 5);

PredicateAbstraction
b, b,

i>10 i<5

int 1=0;
do {

assert (i < 10);

[b,]

b, b,=b, ?T:(b,?F:*¥), i4+;
b,? *:F;
}while (1 < 5);

| -,

Transitions: Neutrations

assume

Y2

Modify the control state p
Modify the topmost stack element 4
Do not modify the elements below 71

Transitions: Expansions

call push
(p,7) = (¢,7172) l
2
]i/) w (i/) w

Modify the control state p
Modify the topmost stack element
Push a new element on the stack

Transitions: Contractions

return

Modify the control statep
Pop the topmost stack element~y

Model Checking Boolean Programs

Reachability of locations in Boolean Programs is decidable
BDD based symbolic model checkers Bebop, Moped
So why bother to work on a ,,solved” problem?

SatAbs: >70% of runtime spent verifying Boolean
Programs

BDD-based techniques don‘t scale for large number of
variables

But is there something faster than BDDs?

SAT-solvers can solver instances with a huge number of
variables

QBF-solvers are improving steadily

