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Introduction
• SystemC high-level modeling of System-on-Chips

– a set of class libraries to model hardware systems in a C++ 
• processes, signals, modules, bits data types, scheduler, etc.

• Transaction-level Modeling (TLM)
– a transaction is an abstraction of a sequence of events

• FIFO buffer communication (carrying an abstract data type) 
• an interface method call (shared variable communication)

– very useful to abstract low-level bus signaling details 
– provides a vast increase in simulation speed compared to RTL 

• because the model is much simpler

• Problem: no provisions for reactivity
– found a need to extend TLM to capture classical reactive 

features (reset or kill of a transaction)
– not possible to capture with current SystemC TLM libraries



Motivating Example: A Transactional 
Memory Model

• Memory architecture to exploit multi-core architecture

1. A program is split into many transactions
• Program executes as phases - transactions with the memory

2. On a multi-core system - each transactions are 
executed concurrently and speculatively
– Read data during the execution

• Keep track of read-set
– Write all data at once when done

3. When a transaction completes – conflict management
– Writes data back to the memory
– Other transactions listen to see if they have a data dependency

• Is a value written to an address which is in the read-set?
• If so, the transaction restarts



A transaction …

Motivating Example: A Transactional 
Memory Model

can start other transactions…



… a reset can happen at anytime during a transaction …

How should the reset be handled wrt
to the pending sub-transactions?

Motivating Example: A Transactional 
Memory Modelproblem…



Motivating Example: A Transactional 
Memory Model

? ? ? ? ? ? ? ?



Challenges
1. Specification of transactions and their compositions using 

property specification languages can be difficult
– because of the semantics of SystemC TLM
– many TLM events can happen simultaneously, makes for long and 

complicated properties
2. Implementation of reactive features in SystemC TLM is ad hoc

– Reactive : respond only when events are received
– killing/controlling the life and death of processes (do/watching

statements a la Esterel to capture the reactivity)
– atomicity of transaction events 

• in specification but not in the implementation
(rendezvous vs buffered TLM communications)

3. Verification of the SystemC implementation of the transactions
– existing approaches do not really support TLM
– difficult to scale because � software verification



Contribution

We define an approach to specify, implement and 
reason about reactive transactions
– transactions that can be reset or killed before their 

completions 
– relate atomic specification to non-atomic 

implementation of a transaction
Specifically, we provide:

1. A language to describe reactive transactions and 
their compositions as a first-order construct

2. An architectural pattern to capture reactivity and the 
cascading resets

3. A verification framework to verify implementation 
reactive transaction specifications
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Related Work: Protocol Monitors 

• A language is used to describe the communication protocol 
– automatically generate controller or a verification monitor 

– regular expression describing point-to-point communication and 
translation to state machines [Seawright et al - 1994] [Synopsys 
Protocol Compiler] [Sigmund et al. - 2002]

– augment language with constructs for pipelines and registers –
sophisticated synthesis algorithms [Oliveira et al. - 2002 ]

– Language based on concurrent guarded transitions with extensive 
verification support [Shimizu et al. - 2002]

– PSL and extensions used to describe module interface properties and 
communication protocols – efficient translations to monitors [Marschner
et al. - 2002] [Balarin et al. - 2006] [IBM FoCs] 

• Protocols in this work
– capture the reactive features in the transaction and their compositions
– use “watching” statement of CRP (Esterel + CSP)
– SystemC TLM intricacy - possibly many events happening at an instant



Related Work : SystemC Verification
• Monitor-based approaches

– Abstract State Machine-based [Habibi et al. - 2006]: 
• specification using PSL or MSC – translated into a monitor
• can check for safety property using Microsoft ASML tools

– synchronous frameworks-based
• SIGNAL [Talpin et al. - 2003]   
• LUSTRE [Moy et al. - 2005]

• SMV-based approaches 
– predicate abstraction and other techniques scales well [Kroening et al. -

2006]
– translation and verification of TLM subset [Shyamasundar et al. - 2007]
– many efficient algorithms, and also includes liveness properties

• Verification in this work
– use the reactive transaction description to generate monitors
– use an SMV-based verification engine to prove absence of deadlocks or 

stalls, and liveness properties.
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Specification of Reactive Transactions

• A transaction as a first-order entity
– provides a context and a simple interface - control signals

• Captures the control template 
– used to chain together many transactions
– start and done can be mapped to other events
– behavior can be distributed over many components

• Use a transaction-specific specification language



Syntax of Specification Language

We use the synchronous hypothesis - a la Esterel:
• processes can take many actions in one instant

Transactions are processes – a sequence of statements :



A Note on SystemC TLM Semantics

• Processes synchronize through the 
TLM buffers (FIFOs)

• In essence an asynchronous model
– Rendezvous maps to buffers
– but core SystemC is synchronous

Bridge
buf2

buf4

buf1

buf3

SC_MODULE(Bridge) {
sc_port<tlm_get_if<bool> > buf1;
sc_port<tlm_put_if<bool> > buf2;
sc_port<tlm_get_if<bool> > buf3;
sc_port<tlm_put_if<bool> > buf4;

SC_CTOR(Bridge) {
SC_PROCESS(process);

}

void process() {
bool val;
while(true) {

val = buf1->get();
buf2->put(val);
val = buf3->get();
buf4->put(val);

}
}

};

Many rendezvous can occur in a cycle…
- {buf1_get}
- {buf1_get, buf2_put}
- {buf1_get, buf2_put, buf3_get}
- {bu1_get, buf2_put, buf3_get, buf4_put}

… many micro steps -> one macro step

A monitor need to check for all these possible event combinations…



Semantics of Specification 
Language: Transition System

For each statement:

where:
– stmt : next statement at the program counter location
– � ��������� � �� � ���	 
 ��� ��

� �� 
 �� � ��
– E : events in the  environment 
– A : set of actions in the environment
– L : pending labels in the environment
– b : flag indicating the termination of the reaction 

Synchrony hypothesis: the instantaneous reaction keeps 
going until the b flag indicates the termination



Semantics of Specification 
Language: Rendezvous

At anytime, both 
processes can 

choose not to send

a

pause

Both sending and 
receiving processes 
have to agree on a



Semantics of Specification Language: 
Transactions

Transaction statements are also rendezvous

when a transaction starts, a pending transaction label is 
added to the environment

when the transaction is done, the pending label 
is removed form the environment



Semantics of Specification Language: 
Watching

Watch a process for a given condition:

When the condition happens, kill all the pending transactions:

Otherwise, just keep watching…

key idea: watch for the transaction kill events
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Verifiable Implementation in 
SystemC

• Issues:
1. Capture reactivity through exceptions to 

mimic watching statements
2. Address the non-atomicity of rendezvous 

and reset handlers
3. Provide an architectural patterns to keep 

track of the pending transactions



Reactivity and Exceptions

#define MYWAIT(event_expr, reset_cond) \
wait(event_expr); \
if (reset_cond) \

throw 1;

MYWAIT( (clk.posedge_event() | reset.posedge_event()), 
(reset.event() && reset ===1) );

try {
ctrl->write(1,1);

} catch (int reset_code) {
ctrl->reset__write();

}

1. Define a wait macro that allows for the reset behavior: 

2. In a ctrl->write() transaction, all the waits have to check 
for the reset condition: 

3. Transactions are invoked 
in a try/catch block, 
• to propagate the reset 

conditions:



Non-atomicity Issues in Reset
• Correlation of atomic and non-

atomic exchange 
– in specification, a transaction is started 

instantaneously
– in the SystemC implementation, the 

events are not atomic
• communication are buffered: 
• atomic events are implemented as 

handshakes between processes
• example – req/ack protocol

a-a+

a

b-b+

b

• When a transaction reset happens
– the handshake needs to be cancelled

• similar to a CSP channel implementation
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Architectural Pattern
• Provide the implementation construct and templates to 

keep track of transactions and handshakes
– access the transaction status and control signals
– monitor and reset the buffers

• Challenges: 
– a transaction server can process multiple transactions 

simultaneously
– need to encode the product of states for all the interleavings of 

the concurrent transactions (with the corner cases)
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Reset Scenarios #1

if (pending__t2 and status__t2 == ready and req_buf__t2.full()) {
kill__t2 = 1;
wait until (req_buf__t2.empty());
kill__t2 = 0;
wait until (status__t2 == killed);

}

killed

• t1 start t2,
– t1 is killed before t2 actually 

starts

• Assumes that the server for t2 
will:
1. will eventually pick up the 

request 
2. will notice the kill__t2 is 

asserted 
3. will discard the request



Reset Scenarios #2
• t1 start t2,

– t1 is killed at the same time as 
t2 completes

– the handler might need to pick 
up and discard the response

if (pending__t2 and status__t2 == in_progress) {
kill__t2 = 1;
wait until ( status__t2 == killed r status__t2 == done );
kill_t2 = 0;
if (rsp_buf__t2.full())

rsp_buf__t2.get();
}



Reset Scenarios #3
• t1 start t2

– t1 is killed after t2 is done, but 
t1 has not yet picked up the 
response

– the handler has to pick up an 
discard the response  from t2

if (pending__t2 and status__t2 == done and req_buf__t2.full()) {
assert (rsp_buf__t2);
rsp_buf__t2.get();
assert(status__t2 == done);

}



Implementation and Verification Issues 

• Reset handling
– architectural patterns provide the guideline
– macros provide the extra statements
– it is the responsibility of the designer to build 

the reset event handlers
• we do not yet provide an algorithm to synthesize 

the controllers 

• It is not easy to build such handlers
– the value of the verification framework
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Verification Experiments

• Verify a simplified transactional memory controller
– Automatic generation of transaction monitors
– Automatic translation of SystemC modules into SMV modules

• We use the transaction specification language
– Specify the global transaction specifications
– Manually derive local component specification



monitors all the 
reset conditions

use the watching statements

Specification view: conceptual model of the transactions

Implementation view: with the reset handlers



Specification view: conceptual model of the transactions

Implementation view:

Specification for the 
transaction controller

while (true) {
rc_rcv read__start |C| rv_rcv write__start;
G (read__start && !read__kill) {

do {
exec_start addr_in_cache;
exec_done addr_in_cache;
exec_start get_value;
exec_done get_value;
rn_snd read__done;

} watching read__kill__posedge_event
} 
[]
G (write__start && !write__kill) {

do {
exec_start write_value;
exec_done write_value;
rv_snd write__done;

} watching write__kill__posedge_event
} 
[]
G ( (!(read__start && !read__kill)) && 

(!(write__start && !write__kill)) ) {
}

} 



Verification Results

• Properties are monitor assertions, C++ assertions, 
liveness assertions
– the verification times are compounded in the table entries

• Found many bugs -
– deadlock caused by buffers not being properly reset 
– in concurrent transactions – bad encoding of interleavings



Limitations
• Architectural pattern can be challenging to implement

– User needs to keep track of many concurrent transactions
• User needs to write the top-level SMV file 

– with the environment fairness constraints
• Language-level limitations

– support TLM buffers of size one only.
– other constructs close the RTL subset

• Verification performance 
– is function of the efficiency of the SystemC translation
– can be optimized further



Summary and Future Work
• Problem: 

– Need for reactive features in TLM models
• Contributions:

– a specification language for reactive transactions
– an architectural template to implement the reactive transactions
– implementation constructs for reset/kill of transactions in TLM 
– a verification framework, including a tool for the generation of the 

transaction verification monitors
• Future work

– Be able to generate the controller and reset channels
– Automatic check for the composability of the specification

• Address the issues in mixing asynchrony and synchrony
– Improve verification performance
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