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Goal

• Software checking tools
– Produce a long sequence of queries

(tens, hundreds of thousands)
– Frequently some sharing 

(common sub-expressions) 
among adjacent queries

• Exploit that sharing
– Faster solving of a sequence of queries

(verification conditions)
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Verification conditions (VCs)

• Logical formulas

– Constructed from a system and desired 
correctness properties

– Validity of VCs corresponds to the correctness 
of the system (or its abstraction)
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Trend towards automation...

• Proving validity 
of VCs automatically:

– Avoids manual effort

– Has its limitations 
• Computability
• Performance often unacceptable

(especially when checking large real-world 
software)
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How do we improve performance of 
decision procedures?

• Algorithmical improvements
– Faster algorithms 

(e.g. watched literals in SAT solvers)
• Better heuristics

– Usually result of better understanding of the problem
• Learning techniques

– Avoid redundant work
• Automated tuning [Hutter et al., FMCAD ’07]

– Automated finding of good combinations of search 
parameters

• Exploiting structure of problems



�/32

Exploiting structure in software 
checking

• Libraries change less 
often than other code
[Rountev et al. ’06]
– Pre-analyze libraries

• Shared code among 
different versions
[Conway et al. ’05]
– Analyze only modified code 

and its cone of influence
• Structural abstraction 

[Babic, Hu ’07]
– Abstract function calls

• What is next?

Coarse-grained

Fine-grained
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Inter-VC sharing

• Most software checking tools produce a large 
number of queries
– Extended static checkers
– Testing tools

• Generated queries often share some 
subexpressions (especially adjacent queries)

• How about exploiting this inter-VC sharing?
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A naïve approach

• Construct a large disjunction

• If certain VC is not valid, add a clause that 
blocks it
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Why is naïve approach
a bad idea?

• Blocking clause does not stop the solver completely 
from analyzing at least part of the search space 
corresponding to blocked verification conditions

• All VCs don’t fit in the memory
• Only a small percentage of learned facts can be kept 

around (e.g. learning in SAT solvers)
• Not all learned facts are re-usable

(context-dependency)
• In our setting, future VCs are not known

(constructed on-the-fly through structural abstraction)
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What is needed

• A fast technique to identify

– Context-independent facts

– In online manner (future VCs not known)

– Compatible with standard decision 
procedures
(in our case bit-vector theorem prover, based 
on a SAT solver)
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Dominance

Definition [Dominance relation]
A node n dominates node m if and only if 
all the paths from the root of the graph to 
m go through n, written as n>>m.
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Dominance
Example

GRAPH
DOMINATOR TREE
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Maximally shared graph

• An acyclic graph

• Nodes represent constants, variables, and 
operators

• Common subexpressions eliminated

• A non-canonical representation
(can be close if a solid term rewriting is used)
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Maximally shared graph
Example

Expression:
(a > b) => (a >= b)

a b

n0

=>
n2

n1

> >=



��/32

Logical consistency of max.-shared 
graphs

• Max. shared graphs
– Represent circuits

• Circuits
– For any input produce 

output
– Always logically consistent

• Validity proven by:
– Forcing output (=>)

to false
– Proving the expression 

UNSAT
• Forcing an output to 

certain value
– Can cause inconsistency

a b

n0

=>
n2

n1

> >=
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Context-independence(last def!)

• A node n in max. shared graph is fixed by the 
decision procedure
– If the decision procedure derives invariant 

n==constant
– Written:

• fixDP(n) = true
• FixValDP(n) = constant

• An invariant (derived by a decision procedure) 
is context-independent
– If it is uniquely implied by its sub-expressions
– Otherwise, invariant is context dependant 
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Assumptions required for the presented 
technique

1) VCs are maximally shared graphs (acyclic)
• Routinely satisfied in practice, if not satisfiable with some pre 

processing (common subexpression elimination)
2) Decision procedure must be able to identify invariants 

of the form var == constant
• E.g. learned unit literals are such facts

3) Complete propagation of equalities
• E.g. a=7,b=7,c=7 instead of a=7, b=a, c=b
• Trivial to satisfy with some amount of post processing

4) Proper subexpressions of a VC are logically consistent
• Ensures that the implicants derived from a subexpression are 

meaningful (anything can be derived from false)
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Computing context-insensitive 
invariants

• Precise:
– Recording proofs
– For SAT solvers, that means implication graphs
– Too expensive (computationally)

• Approximated:
– Reconstruction based
– From the implied invariants var==constant
– Relatively cheap
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3 types of invariant n==constant
propagation

I. From above, 
circumventing the 
node
(context-dependent)

II. From above
(context-dependent)

III. From below
(context-independent)

Blue lines represent constant 
propagation chains
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Eliminating context-sensitive invariants 
of type I

• Check weather n 
dominates all its 
descendants

• Test: dominance –
eliminates (I)
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Eliminating context-sensitive invariants 
of type II

• Check that the chain of 
implications did not come 
from above
(from its predecessor)

• Test: n is fixed, but none 
of its predecessors
is fixed – eliminates (II)

• After eliminating context-
sensitive invariants, we 
are left only with context-
insensitive ones
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Algorithm – finds a subset of all
context-insensitive facts

procedure Fix(n, Fixed) { // Fixed is a table with fixed nodes
for each successor s do

Fix(s, Fixed)

if !isRoot(n) && isOperator(n) && fixDP(n) then
for each descendant d do

if !isConstant(d) || !(n>>d) then
return

for each predecessor p do
if fixDP(p) then

return
Fixed[n] = FixValDP(n)
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Complexity

• O(n2) in the worst case, very pessimistic

• Implementation uses 
Tarjan-Lengauer (’79) O(n log(n))
algorithm for dominance computation

• Dominance check – constant time
(ancestry relation on trees can be 
established in amortized constant time)
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High level algorithm

clear table Fixed
for each VCi do

C = Translate(VCi) && VCi == false
for each descendant d of VCi do

if n exists in table Fixed then
C = C && n==Fixed[n]

if Solve(C) == satisfiable then
report bug

Fix(VCi, Fixed) // Learn what you can
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Preliminary experimental results
[obtained with Calysto ext. static checker]

01266.721881.49000126Wine 0.9.27

0365.80368.5809076Xchat v2.6.8

63157.683478.6862737Dspam v3.6.5

0214.50199.6200920Licq v1.3.4

05.105.313639HyperSAT v1.7

0582.50725.811304Bftpd v1.6

TimeoutsTime [s]TimeoutsTime [s]

New approachBase approach#VCsKLOCBenchmark

Timeout=300 [s], dual-processor AMD X2 4600+, 2 GB RAM
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Discussion

• Fewer timeouts, somewhat better runtime

• Method is (implementation-wise) complex

• More research needed
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Future work

• Better algorithm that discovers complete 
set of context-independent facts

• Semi-eager expansion that checks k
(where k is small) VCs at once using 
classical disjunction and blocking clauses


