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Goal

« Software checking tools

— Produce a long sequence of queries
(tens, hundreds of thousands)

— Frequently some sharing
(common sub-expressions)
among adjacent queries

 Exploit that sharing

— Faster solving of a sequence of queries
(verification conditions)

3/32



Verification conditions (VCs)

 Logical formulas

— Constructed from a system and desired
correctness properties

— Validity of VCs corresponds to the correctness
of the system (or its abstraction)
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Trend towards automation...

* Proving validity
of VCs automatically:

— Avoids manual effort

— Has its limitations
« Computability
« Performance often unacceptable

(especially when checking large real-world
software)
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How do we improve performance of
decision procedures?

Algorithmical improvements

— Faster algorithms
(e.g. watched literals in SAT solvers)

Better heuristics

— Usually result of better understanding of the problem
Learning techniques

— Avoid redundant work

Automated tuning [Hutter et al., FMCAD '07]

— Automated finding of good combinations of search
parameters

Exploiting structure of problems
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Exploiting structure in software
checking

Coarse-grained » Libraries change less

often than other code
[Rountev et al. '06]

— Pre-analyze libraries

« Shared code among
different versions

[Conway et al. '05]
— Analyze only modified code
and its cone of influence
e Structural abstraction

C [Babic, Hu '07]
— Abstract function calls
:  What is next?

Fine-grained
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Inter-VC sharing

Most software checking tools produce a large
number of queries

— Extended static checkers

— Testing tools

Generated queries often share some
subexpressions (especially adjacent queries)

How about exploiting this inter-VC sharing?

8/32



A naive approach

« Construct a large disjunction

 |f certain VC is not valid, add a clause that
blocks it
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Why Is naive approach
a bad idea?

Blocking clause does not stop the solver completely
from analyzing at least part of the search space
corresponding to blocked verification conditions

All VCs don't fit in the memory

Only a small percentage of learned facts can be kept
around (e.g. learning in SAT solvers)

Not all learned facts are re-usable
(context-dependency)

In our setting, future VCs are not known
(constructed on-the-fly through structural abstraction)
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What is needed

A fast technigue to identify
— Context-independent facts
— In online manner (future VCs not known)

— Compatible with standard decision
procedures
(in our case bit-vector theorem prover, based
on a SAT solver)
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Dominance

Definition [Dominance relation]

A node ndominates node mif and only if
all the paths from the root of the graph to
m go through n, written as n>>m.
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Dominance
Example
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Maximally shared graph

An acyclic graph

Nodes represent constants, variables, and
operators

Common subexpressions eliminated

A non-canonical representation
(can be close if a solid term rewriting is used)
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Maximally shared graph
Example

Expression:
(a>Db)=>(a>=Db) @
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Logical consistency of max.-shared
graphs

« Max. shared graphs n2
— Represent circuits

« Circuits

— For any input produce

output no \ nl

— Always logically consistent

 Validity proven by:
— Forcing output (=>)
to false

— Proving the expression
UNSAT

 Forcing an output to
certain value
— Can cause inconsistency
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Context-independence us

* A node nin max. shared graph is fixed by the
decision procedure

— If the decision procedure derives invariant
==constant

— Written:
» FixValpp(n) = constant

* An invariant (derived by a decision procedure)
IS context-independent

— If it is uniquely implied by its sub-expressions
— Otherwise, invariant is context dependant
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Assumptions required for the presented
technique

1) VCs are maximally shared graphs (acyclic)

«  Routinely satisfied in practice, if not satisfiable with some pre
processing (common subexpression elimination)

2) Decision procedure must be able to identify invariants
of the form var == constant
« E.g. learned unit literals are such facts
3) Complete propagation of equalities
- E.g. a=7,b=7/,c=7instead of a=7, b=a, c=b
«  Trivial to satisfy with some amount of post processing
4) Proper subexpressions of a VC are logically consistent

«  Ensures that the implicants derived from a subexpression are
meaningful (anything can be derived from false)
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Computing context-insensitive
Invariants

* Precise:
— Recording proofs
— For SAT solvers, that means implication graphs
— Too expensive (computationally)

* Approximated:
— Reconstruction based
— From the implied invariants var==constant
— Relatively cheap
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3 types of invariant n==constant

propagation
Blue lines represent constant
propagation chains / From above
circumventing the
node

(context-dependent)

| Il.  From above
(context-dependent)

Ill.  From below
(context-independent)
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Eliminating context-sensitive invariants
of type |

e Check weather n
dominates all its
1 descendants

 Test: dominance —
eliminates (I)
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Eliminating context-sensitive invariants
of type I

« Check that the chain of
implications did not come
from above
(from its predecessor)

| « Test: nis fixed, but none
of its predecessors
Is fixed — eliminates (lI)

 After eliminating context-
sensitive invariants, we
are left only with context-
Insensitive ones
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Algorithm — finds a subset of all
context-insensitive facts

procedure Fix(n, Fixed) { // Fixed is a table with fixed nodes
for each successor sdo
Fix(s, Fixed)

if lisRoot(n) && isOperator(n) && fix,p(n) then
for each descendant d do
if lisConstant(d) || !(n>>d) then
return
for each predecessor p do
if fixyp(p) then
return
Fixed[n] = FixValyp(n)
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Complexity

« O(n?) in the worst case, very pessimistic

* Implementation uses
Tarjan-Lengauer ('79) O(n log(n))
algorithm for dominance computation

» Dominance check — constant time
(ancestry relation on trees can be
established in amortized constant time)
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High level algorithm

clear table Fixed
for each VC, do
C = Translate(VG,) && VC, == false
for each descendant d of VCido
if n exists in table Fixed then
C = C && n==Fixed[n]
if Solve(C) == satisfiable then
report bug
Fix(VC,, Fixed) // Learn what you can
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Preliminary experimental results
[obtained with Calysto ext. static checker]

Timeout=300 [s], dual-processor AMD X2 4600+, 2 GB RAM

Benchmark KLOC | #VCs Base approach New approach

Time[s] | Timeouts Time [s] | Timeouts
Bftpd v1.6 4 1130 725.8 0 582.5 0
HyperSAT v1.7 9 1363 5.3 0 5.1 0
Licq v1.3.4 20 2009 199.6 0 214.5 0
Dspam v3.6.5 37 8627 3478.6 8 3157.6 6
Xchat v2.6.8 76 8090 368.5 0 365.8 0
Wine 0.9.27 126 9000 1881.4 2 1266.7 0
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Discussion

* Fewer timeouts, somewhat better runtime
* Method is (implementation-wise) complex

 More research needed
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Future work

 Better algorithm that discovers complete
set of context-independent facts

« Semi-eager expansion that checks k
(where kis small) VCs at once using
classical disjunction and blocking clauses
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