On the Characterization of
Until as a
under

‘Dana Framan

Hebrew University,
IBM Haifa Research Lab

ZON PA-AN

. In Singly Clocked Designs g

= The signal that causes a memory element
(flip-flop or latch) to make a transition is
termed the clock

= The temporal operators in logics such as LTL
are interpreted with respect to the clock.

= The formula
globally (p -> next q)
is intferpreted as

globally, if p then at the next clock tick, q.

PA-AN

F\ In Multiply Clocked Designs i

= Some flip-flops may be clocked with clka and
some with clkb

Thus, the mapping between temporal operators and
clock cycles cannot be done automatically

The formula itself must provide the desired
mapping
= For example
globally (p -> next q)@clka
is intferpreted as
globally, if p during a cycle of clka

then at the next clock tick of clka, q

ZON

. Singly vs. Multiply Clocked Designs

globally (p -> next q)
(Ol ARl LA | SR

f

i)

Previous Work

In Eisner et al gave a simple
semantics for LTL extended with a clock
operator

The suggested semantics has been adopted by
the IEEE standards PSL and SVA

The logic in was measured against
a list of design goals

It was shown that it meets all design goals,

except for: preserving the least-fixed point
characterization of the untill operator under
multiple clocks

The characterization of until as fixed
point is not merely a theoretical issue

it has practical applicability for tools

In this work

= We show that with a minor addition to
the semantics of the untill
operator preserves its least fixed-point
characterization (as well as the other
requirements)

e Overview of the talk o)

= Understanding the ideas and semantics of
[EFHMVO3]

= Understanding the problem with the least
fixed-point characterization of untill

= The proposed

Eg The idea in

= Projection: the role of the clock
operator is to define the projection on
the cycles in which the formula should

be evaluated,-
O

The projection is B
going to be one that globally (p > nQ_XT Q)@Clka

— we can undo (as we > @
will see later : Eo b ¥ . =al .

Coping with finite ticks

= But what if the clock stops ticking?

= The semantics of LTL is typically
defined for infinite paths.

= A projection w.r.t c

ka of an infinite

path where clka stops ticking yields a

finite path

2. Coping with finite ticks g

= Solution: use the weak and strong versions of
the next operator (next! and next) that are
introduced by Pnueli et al. for finite path

The formula next! f demands that there is a next
cycle and f holds on it

Whereas next f demands that if there is a next
cycle then f holds on it.

S)

clka

Y

|# globally (p -> next! q)@clka
|= globally (p -> next q)@clka

w
w

Coping with zero ticks

= But what if the clock never ticks?

= The semantics of LTL (for finite/infinite
words) assumes paths are non-empty.

= A projection w.r.t clka of a finite/infinite
path where clka never ticks yields an
empty path.

[z, Coping with zero ticks g

= Solution: define weak and strong versions of a
boolean expression (bl and b)

= The formula b! demands that there is a
current cycle and b holds on it

= Whereas b demands that if there is a current
cycle then b holds on it.

Nested Clocks

= What happens in the event of a clock switch?
= Consider

(start -> next ((busy until end))@clkb)@clka

= We would like the inner formula to be
evaluated on the cycle where clkb holds

rather than the cycles where both clka and
clkb hold

That is, we would like the nested clock to define a
new projection rather than refine the projection
further

Nested Clocks

(start -> next ((busy until end))@clkb)@rose(c

@

(D

clka
clkb

start

busy

end

ka)

ZON

@. b and next b under multiple clocksﬁ

= InLTL
The formula b checks b at the current cycle

f

The formula next b checks b at the next cycle

globally (p -> q)

. &)
s i NSV i NS . i NS .

|

i
~ globally (p -> next q) o
CD »

ZON

. b and next b under multiple clocks

f

= InLTL®

The formula b@clk checks b at the closest clock tick of clk
(if such a tick exists)

The formula next b@clk checks b at the second closest
clock tick of clk (if such a tick exists)

globally (p -> q)@clka o

o)

¥

i)

Misaligned Nested Clocks

In singly-clocked formulas all sub-formulas are ona
, Thus the closest clock tick is always the current tick

In multiply-clocked formulas sometimes sub-formulas are

on a cycle which is , Thus the closest
clock tick may be different than the current tick

(start -> next ((busy until end))@clkb)@rose(clka)

) o
(D
clka —— P,
clkb
start
busy
end
J

% The Semantics of g

A finite word w is a clock tick of clk if clk holds only on the last letter of w.

45E)

=cik bl iff w contains at least 1 clock tick of clk and b holds on the first
w |=cik b iff if w contains at least 1 clock tick of clk then b holds on the first

3

w |=ck next! f iff w contains 2 clock ticks of clk and f holds on the second
w |=ck next f iff if w contains 2 clock ticks of clk then b holds on the second

W [=ck fAGiIff w |=ck f and w [=cik g
w |=ck 2f iff w J=ck f

w |=ck f until! g iff there exists a clock tick of clk in w where g holds
and f holds on every preceding tick of clk
w |=ck f until g iff either w |=ck f until! g or

f holds on every tick of clk inw

w |=ck f@clkb iff w |=cikb f

%The Problem with 'S solu’rior@

= InLTL f untill g is a least fixed-point solution
of the equation
E(S)=gV (f A next!S)
= In Eisner et al show that f untill g
is a least fixed point solution of the equation
E'(S) = (truel A g) V (f A next! S)

If only a single clock is involved.

When multiple clocks are involved the
characterization no longer holds.

The counter example
(p untill (q@clkq))

—/

* w £k (p untill (q@clkq))

Since there is no clock tick of clk where q@clkq holds

W |=clk (truel A (q@clkq)) V (p A Next! (p untill (q@clkq)))

Since both q@clkq and truel hold on the first cycle

E& The Problem

= The problem in is that there is no way to
express the property “evaluate f at the closest clock
tick of clkb”

Unless the clock context (the outer clock) is clkb

In the previous example we got that q@clkq is evaluated

while we wanted it to be evaluated at the
of clk

w |=clk (q@clkq)

Solution

= Solution: introduce an

(such as in CBV) that takes you to the
closest clock tick

Actually 2 alignment operators (weak & strong)

Formally

= We introduce next!™and nextm

The formula (nextIm f)@clk demands there are m+1 clock
ticks of clk and f holds on the last of them

The formula (next™ f)@clk demands that /¥ there are m+1
clock ticks of clk then f holds on the last of them

= When the exponent
m=1 we get the usual next/next! operators

m>1 we get iteration of the usual next/next!
operators

m=0 we get the alignment operators

e

&, The Semantics of [EFHMV03] 5

A finite word w is a clock tick of clk if clk holds only on the last letter of w.

=cik bl iff w contains at least 1 clock tick of clk and b holds on the first
w |=ck b iff if w contains at least 1 clock tick of clk and b holds on the first

3

w |=ck next! f iff w contains 2 clock ticks of clk and f holds on the second
w |=ck next f iff if w contains 2 clock ticks of clk then b holds on the second

W [=ck fAGiIff w |=ck f and w [=cik g
W |=ck =F iff w |£ck f

w |=ck f until! g iff there exists a clock tick of clk in w where g holds
and f holds on every preceding tick of clk
w |=ck f until g iff either w |=ck f until! g or

f holds on every tick of clk inw

w |=ck f@clkb iff w |=cikb f

k5 The Resulting Semantics 5

A finite word w is a clock tick of clk if clk holds only on the last letter of w.

=cik bl iff w contains at least 1 clock tick of clk and b holds on the first
w |=ck b iff if w contains at least 1 clock tick of clk and b holds on the first

3

w |=ck next!m f iff w contains m+1 clock ticks of clk and f holds on the second
w |=ck next™ f iff if w contains m+1 clock ticks of clk then b holds on the second

W [=ck fAGiIff w |=ck f and w [=cik g
W |=ck =F iff w |£ck f

w |=ck f until! g iff there exists a clock tick of clk in w where g holds
and f holds on every preceding tick of clk
w |=ck f until g iff either w |=ck f until! g or

f holds on every tick of clk inw

w |=ck f@clkb iff w |=cikb f

%Fixed—PoinT Characterization of un’ril@

= InLTL f until! g is a least fixed-point solution
of the equation
E(S)=gV (f A next!S)

= In the suggested logic f untill g is a least
fixed point solution of the equation

E'(S) = nextl® (g v (f A next! S))
- ThaT 1S For a proof

see the

E'(S) = next!0 E(S) paper

= A simple generalization of the LTL
characterizationl!l

O

o

Examining that counter example

= The problem with the counter example was that the
until formula did not hold while the "bad" fixed-point

characterization did.
= Now both do not hold:

(p until! (q@clkq))

(0

clkq

w JZcik nextl0 ((q@clkq) Vv (p A next! (p untill (q@clkq))))

since both w [£clk next!0 (q@clkq)
and w l/clk nextlo next! (p until! (q@clkq))

PA-AN

©]

et

Conclusions

= We have shown that by adding
weak/strong alignment operators to
LTL® the least fixed-point
characterization of untill is preserved

= The resulting logic is obtained by
augmenting the next/next! operators of
LTL® by an exponent

the alignments operators are obtained by taking
the exponent to be zero

= The resulting semantics meets all other
requirements set by [EFHMVO3] (Forproos

see the
paper

o

i)

The Erad

Thank you!

