
Symbolic Execution and
Model Checking for Testing

Corina P�s�reanu and Willem Visser
Perot Systems/NASA Ames Research Center and SEVEN Networks

Thanks

• Saswat Anand (Georgia Institute of Technology)
• Sarfraz Khurshid (University of Texas, Austin)
• Radek Pelánek (Masaryk University, Czech Republic)
• Suzette Person (University of Nebraska, Lincoln)
• Aaron Tomb (University of California, Santa Cruz)
• David Bushnell, Peter Mehlitz, Guillaume Brat (NASA Ames)

Introduction
• Goal:

– Detect errors in complex software
– Data structures, arrays, concurrency

• Solutions:
– Software model checking with (predicate) abstraction

• Automatic, exhaustive
• Scalability issues – Explicit state model checking can not handle large, complex input

domains
• Reported errors may be spurious

– Static analysis
• Automatic, scalable, exhaustive
• Reported errors may be spurious

– Testing
• Reported errors are real
• May miss errors
• Well accepted technique: state of practice for NASA projects

• Our approach:
– Combine model checking and symbolic execution for test case generation

Model Checking vs Testing/Simulation

OKFSM
Simulation/
Testing

error

OK
FSM

specification

Model Checking

error trace
���������

�����	
���

�

������	��

���������

• Model individual state
machines for subsystems /
features

• Simulation/Testing:
– Checks only some of the

system executions
– May miss errors

• Model Checking:
– Automatically combines

behavior of state machines
– Exhaustively explores all

executions in a systematic
way

– Handles millions of
combinations – hard to
perform by humans

– Reports errors as traces
and simulates them on
system models

Java PathFinder (JPF)
• Explicit state model checker for Java bytecode

– Built on top of custom made Java virtual machine
• Focus is on finding bugs

– Concurrency related: deadlocks, (races), missed signals etc.
– Java runtime related: unhandled exceptions, heap usage, (cycle budgets)
– Application specific assertions

• JPF uses a variety of scalability enhancing mechanisms
– user extensible state abstraction & matching
– on-the-fly partial order reduction
– configurable search strategies
– user definable heuristics (searches, choice generators)

• Recipient of NASA “Turning Goals into Reality” Award, 2003.
• Open sourced:

– <javapathfinder.sourceforge.net>
– ~14000 downloads since publication

• Largest application:
– Fujitsu (one million lines of code)

Symbolic Execution
• JPF– SE [TACAS’03,’07]

– Extension to JPF that enables automated test case
generation

– Symbolic execution with model checking and
constraint solving

– Applies to (executable) models and to code
– Handles dynamic data structures, arrays, loops,

recursion, multi-threading
– Generates an optimized test suite that satisfy

(customizable) coverage criteria
– Reports coverage
– During test generation process, checks for errors

if ((pres < pres_min) ||
(pres > pres_max)) {

…
} else {

…
}

if ((pres < pres_min)) ||
(pres > pres_max)) {

…
} else {

…
}

if ((pres < pres_min) ||
(pres > pres_max)) {

…
} else {

…
}

Symbolic Execution
Systematic Path Exploration

Generation and Solving of Numeric Constraints

if((pres < pres_min) || (pres > pres_max)) {
…

} else {
…

}

[pres = 460; pres_min = 640; pres_max = 960]

[pres = Sym1; pres_min = MIN; pres_max = MAX] [path condition PC: TRUE]

[PC1: Sym1< MIN] [PC2: Sym1 > MAX]

[PC3: Sym1 >= MIN &&
Sym1 <= MAX

Solve path conditions PC1, PC2, PC3 test inputs

Applications
• NASA control software

– Manual testing: time consuming (~1 week)
– Guided random testing could not obtain full coverage
– JPF-SE

• Generated ~200 tests to obtain full coverage
• Total execution time is < 1 min
• Found major bug in new version

• K9 Rover Executive
– Executive developed at NASA Ames
– Automated plan generation based on CRL grammar + symbolic constraints
– Generated hundreds of plans to test Exec engine
– Combining Test Case Generation and Runtime Verification [journal TCS,

2005]
• Test input generation for Java classes:

– Black box, white box [ISSTA’04, ISSTA’06]

Symbolic Execution

• King [Comm. ACM 1976]
• Analysis of programs with unspecified inputs

– Execute a program on symbolic inputs
• Symbolic states represent sets of concrete states
• For each path, build a path condition

– Condition on inputs – for the execution to follow that path
– Check path condition satisfiability – explore only feasible paths

• Symbolic state
– Symbolic values/expressions for variables
– Path condition
– Program counter

x = 1, y = 0

1 > 0 ? true

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 > 1 ? false

int x, y;

if (x > y) {

x = x + y;

y = x – y;

x = x – y;

if (x > y)

assert false;

}

Concrete Execution PathCode that swaps 2 integers
Example – Standard Execution

[PC:true]x = X,y = Y

[PC:true] X > Y ?

[PC:X>Y]y = X+Y–Y = X

[PC:X>Y]x = X+Y–X = Y

[PC:X>Y]Y>X ?

int x, y;

if (x > y) {

x = x + y;

y = x – y;

x = x – y;

if (x > y)

assert false;

}

Code that swaps 2 integers Symbolic Execution Tree

[PC:X Y]END [PC:X>Y]x= X+Y

false true

[PC:X>Y�Y X]END [PC:X>Y�Y>X]END
false true

path condition

Example – Symbolic Execution

False!

• JPF – SE handles
– Dynamically allocated data structures
– Arrays
– Numeric constraints
– Preconditions
– Recursion, concurrency, etc.

• Lazy initialization for arrays and structures [TACAS’03, SPIN’05]
• Java PathFinder (JPF) used

– To generate and explore the symbolic execution tree
– Non-determinism handles aliasing

• Explore different heap configurations explicitly
– Off-the-shelf decision procedures check path conditions

• Model checker backtracks if path condition becomes infeasible
• Subsumption checking and abstraction for symbolic states

Generalized Symbolic Execution

Example
class Node {

int elem;
Node next;

Node swapNode() {
if (next != null)

if (elem > next.elem) {
Node t = next;
next = t.next;
t.next = this;
return t;

}
return this;

}
}

� ����

�� ��

��

�� �� ����

�� �� �

�� ��

�� ��

��	�
���

���������������

����
 � �
	�
���

�������

����

��������

����

�������

�������

�������

�� �� �

�� ��

�� ��

�� �� ����

�� ��

��

� ����

NullPointerException

Lazy Initialization (illustration)

E0
next

E1
next

t
null

t
E0

next
E1

next
?

next
E0

next
E1

t next E0 next E1

next

t

E0
next

E1
next

t

consider executing
next = t.next;

Precondition: acyclic list

E0 E1
next

t
null

next

t
E0 E1

next
?

next
next

Implementation
• Initial implementation

– Done via instrumentation
– Programs instrumented to enable JPF to perform

symbolic execution
– General: could use/leverage any model checker

• Decision procedures used to check satisfiability
of path conditions
– Omega library for integer linear constraints
– CVCLite, STP (Stanford), Yices (SRI)

State Matching: Subsumption Checking

• Performing symbolic execution on looping programs
– May result in an infinite execution tree

• Perform search with limited depth
• State matching – subsumption checking

[SPIN’06, J. STTT to appear]
– Obtained through DFS traversal of “rooted” heap configurations

• Roots are program variables pointing to the heap
– Unique labeling for “matched” nodes
– Check logical implication between numeric constraints

State Matching: Subsumption Checking

E1

E2

E3 E4

E1 > E2 �

E2 > E3 �

E2 E4 �

E1 > E4

E1

E2

E3 E4

Stored state:

New state:

�� ��

Set of concrete
states represented

by stored state

Set of concrete
states represented

by new state

�� ���� ��

E1 > E2 �

E2 > E3 �

E2 < E4 �

E1 > E4

1:

2:

4:3:

1:

2:

3: 4:

Normalized using existential quantifier elimination

Abstract Subsumption

• Symbolic execution with subsumption checking
– Not enough to ensure termination
– An infinite number of symbolic states

• Our solution
– Abstraction

• Store abstract versions of explored symbolic states
• Subsumption checking to determine if an abstract state is re-visited
• Decide if the search should continue or backtrack

– Enables analysis of under-approximation of program behavior
– Preserves errors to safety properties/ useful for testing

• Automated support for two abstractions:
– Shape abstraction for singly linked lists
– Shape abstraction for arrays
– Inspired by work on shape analysis (e.g. [TVLA])

• No refinement!

Abstractions for Lists and Arrays
• Shape abstraction for singly linked lists

– Summarize contiguous list elements not pointed to by program
variables into summary nodes

– Valuation of a summary node
• Union of valuations of summarized nodes

– Subsumption checking between abstracted states
• Same algorithm as subsumption checking for symbolic states
• Treat summary node as an “ordinary” node

• Abstraction for arrays
– Represent array as a singly linked list
– Abstraction similar to shape abstraction for linked lists

Abstraction for Lists

E1 = V0 � (E2 = V1 � E2 = V2) � E3 = V3

PC: V0 v � V1 v � V2 v

��

����
��

����

�

��

����
�	
� ��

����
��

����

���

�

���� �
����

�	
� ��

����

��

����
��

����

�

��

����
�	
� ��

����
��

����

�

��

����
�	
�

�� ��

Symbolic states Abstracted states

2: 3:1:

1: 2: 3:

PC: V0 v � V1 v

PC: V0 v � V1 v � V2 v

E1 = V0 � E2 = V1 � E3 = V2

PC: V0 v � V1 v

Unmatched!

Applications of JPF-SE
• Test input generation for Java classes [ISSTA’04,’06]

– Black box
• Run symbolic execution on Java representation of class

invariant
– White box

• Run symbolic execution on Java methods
• Use class invariant as pre-condition

– Test sequence generation
• Proving program correctness with generation of loop

invariants [SPIN’04]
• Error detection in concurrent software
• Test input generation for NASA flight control software

Test Sequence Generation for Java Containers

• Containers – available with JPF distribution
– Binary Tree
– Fibonacci Heap
– Binomial Heap
– Tree Map

• Explore method call sequences
– Match states between calls to avoid generation of redundant

states
– Abstract matching on the shape of the containers

• Test input – sequence of method calls
BinTree t = new BinTree();
t.add(1);
t.add(2);
t.remove(1);

Testing Java Containers
• Comparison

– Explicit State Model Checking (w/ Symmetry Reductions)
– Symbolic Execution
– Symbolic/Concrete Execution w/ Abstract Matching
– Random Testing

• Testing coverage
– Statement, Predicate

• Results
– Symbolic execution worked better than explicit model checking
– Model checking with shape abstraction

• Good coverage with short sequences
• Shape abstraction provides an accurate representation of containers

– Random testing
• Requires longer sequences to achieve good coverage

Test Input Generation for NASA Software

• Abort logic (~600 LOC)
– Checks flight rules, if violated issues abort
– Symbolic execution generated 200 test cases

• Covered all flight rules/aborts in a few seconds, discovered errors

– Random testing covered only a few flight rules (no aborts)
– Manual test case generation took ~20 hours

• Integration of Automated Test Generation with End-to-end Simulation
– JPF—SE: essentially applied at unit level
– Input data is constrained by environment/physical laws

• Example: inertial velocity can not be 24000 ft/s when the geodetic altitude is 0 ft

– Need to encode these constraints explicitly
– Use simulation runs to get data correlations
– As a result, we eliminated some test cases that were impossible due to

physical laws, for example

Related Approaches
• Korat: black box test generation [Boyapati et al. ISSTA’02]
• Concolic execution [Godefroid et al. PLDI’05, Sen et al.

ESEC/FSE’05]
– DART/CUTE/jCUTE/…

• Concrete model checking with abstract matching and refinement
[CAV’05]

• Symstra [Xie et al. TACAS’05]
• Execution Generated Test Cases [Cadar & Engler SPIN’05]
• Testing, abstraction, theorem proving: better together! [Yorsh et al.

ISSTA’06]
• SYNERGY: a new algorithm for property checking [Gulavi et al.

FSE’06]
• Feedback directed random testing [Pacheco et al. ICSE’07]
• …

Variably Inter-procedural Program Analysis
for Runtime Error Detection

• [ISSTA’07] Willem Visser, Aaron Tomb, and Guillaume Brat
• Dedicated tool to perform symbolic execution for Java programs

– Does not use JPF
– Can customize

• Procedure call depth
• Max size of path condition
• Max number of times a specific instruction can be revisited during the

analysis

• Unsound and incomplete
– Generated test cases are run in concrete execution mode to see if they

correspond to real errors
– “Symbolic execution drives the concrete execution”

Variably Inter-procedural Program Analysis
for Runtime Error Detection

• Applied to 6 small programs and 5 larger programs (including JPF
38538 LOC, 382 Classes, 2458 Methods)

• Varied:
– Inter-procedural depth: 0, 1 and 2
– Path Condition size: 5, 10, 15, 20 and 25
– Instruction revisits: 3, 5, and 10

• Results:
– Found known bugs
– Increasing the call depth does not necessarily expose errors, but decreases the

number of false warnings

• Checking feasibility of path conditions
– Takes a lot of time (up to 40% in some of the larger applications)
– Greatly helps in pruning infeasible paths/eliminating false warnings

• More interesting results – see the paper

Current and Future Work

• New symbolic execution framework
– Moved inside JPF
– Non-standard interpretation of bytecodes
– Symbolic information propagated via attributes associated with program

variables, operands, etc.
– Uses Choco (pure Java, from <sourceforge>) – for linear/non-linear integer/real

constraints
– Available from <javapathfinder.sourceforge.net>

• Start symbolic execution from any point in the program
• Compositional analysis

– Use symbolic execution to compute procedure summaries
• Integration with system level simulation

– Use system level Monte Carlo simulation to obtain ranges for inputs
• Test input generation for UML Statecharts

– Recent JPF extension
• Use symbolic execution to aid regression testing
• Apply to NASA software …

Thank you!

JPF – SE

Generic Decision Procedure Interface

formula satisfiable/unsatisfiable

Omega
Maryland

JPF

CVCLite
Stanford

Yices
SRI

STP
Stanford

Communication Methods

• JPF and the Interface code is in Java
– Decision procedures are not in Java, mainly C/C++ code

• Various different ways of communication
– Native: using JNI to call the code directly
– Pipe: start a process and pipe the formulas and results back and

forth
– Files: same as Pipe but now use files as communication method

• Optimizations:
– Some decision procedures support running in a incremental mode

where you do not have to send the whole formula at a time but just
what was added and/or removed.

– CVCLite, Yices

Decision Procedure Options
• +symbolic.dp=

– omega.file
– omega.pipe
– omega.native
– omega.native.inc

• …inc - with table optimization
– yices.native
– yices.native.inc
– yices.native.incsolve

• …incsolve - Table optimization and incremental solving
– cvcl.file
– cvcl.pipe
– cvcl.native
– cvcl.native.inc
– cvcl.native.incsolve
– stp.native

• If using File or Pipe one must also set
– Symbolic.<name>.exe to the executable binary for the DP

• For the rest one must set LD_LIBRARY_PATH to where the DP libraries are stored
– Extensions/symbolic/CSRC

• Currently everything works under Linux and only CVCLite under Windows
– Symbolic.cvclite.exe = cvclite.exe must be set with CVClite.exe in the Path

Results TCAS

0

5

10

15

20

25

30

35

TCAS (2694 quesries)

omega.pipe
omega.file
cvcl.pipe
cvcl.file
omega.native
omega.native.inc
cvcl.native
cvcl.native.inc
cvcl.native.incsolve
yices.native
yices.native.inc
yices.native.incsolve
stp.native

Results TreeMap

0

100

200

300

400

500

600

700

800

TreeMap size 6 (83592 queries)

omega.pipe
omega.file
cvcl.pipe
cvcl.file
omega.native
omega.native.inc
cvcl.native
cvcl.native.inc
cvcl.native.incsolve
yices.native
yices.native.inc
yices.native.incsolve

�����������	�
���

