Symbolic Execution and
Model Checking for Testing

Corina Pasareanu and Willem Visser
Perot Systems/NASA Ames Research Center and SEVEN Networks

Thanks

Saswat Anand (Georgia Institute of Technology)

Sarfraz Khurshid (University of Texas, Austin)

Radek Pelanek (Masaryk University, Czech Republic)
Suzette Person (University of Nebraska, Lincoln)

Aaron Tomb (University of California, Santa Cruz)

David Bushnell, Peter Mehlitz, Guillaume Brat (NASA Ames)

Introduction

« Goal:
— Detect errors in complex software
— Data structures, arrays, concurrency

« Solutions:
— Software model checking with (predicate) abstraction
« Automatic, exhaustive

. gcalability issues — Explicit state model checking can not handle large, complex input
omains

» Reported errors may be spurious
— Static analysis
» Automatic, scalable, exhaustive
» Reported errors may be spurious
— Testing
» Reported errors are real
* May miss errors
» Well accepted technique: state of practice for NASA projects

« Our approach:
— Combine model checking and symbolic execution for test case generation

Model Checking vs Testing/Simulation

~

FSM Simulation/
— .
Testing
error
FSM
N o
Model Checking
o ~grror trace
specification Line 5: -

['i ne 41:..
Line 47:..

Model individual state
machines for subsystems /
features

Simulation/Testing:

— Checks only some of the
system executions

— May miss errors

Model Checking:

— Automatically combines
behavior of state machines

— Exhaustively explores all
executions in a systematic
way

— Handles millions of
combinations — hard to
perform by humans

— Reports errors as traces
and simulates them on
system models

RE
Java PathFinder (JPF)

Explicit state model checker for Java bytecode
— Built on top of custom made Java virtual machine
Focus is on finding bugs
— Concurrency related: deadlocks, (races), missed signals etc.
— Java runtime related: unhandled exceptions, heap usage, (cycle budgets)
— Application specific assertions
JPF uses a variety of scalability enhancing mechanisms
— user extensible state abstraction & matching
— on-the-fly partial order reduction
— configurable search strategies
— user definable heuristics (searches, choice generators)
Recipient of NASA “Turning Goals into Reality” Award, 2003.
Open sourced:
— <javapathfinder.sourceforge.net>
— ~14000 downloads since publication
Largest application:
— Fuijitsu (one million lines of code)

Symbolic Execution
. JPF— SE [TACAS'03,07]

— Extension to JPF that enables automated test case
generation

— Symbolic execution with model checking and
constraint solving

— Applies to (executable) models and to code

— Handles dynamic data structures, arrays, loops,
recursion, multi-threading

— Generates an optimized test suite that satisfy
(customizable) coverage criteria

— Reports coverage
— During test generation process, checks for errors

RE

Symbolc Execution

Systematic Path Exploration
Generation and Solving of Numeric Constraints

[pres = 460; pres_min = 640; pres_max = 960]

}

if((pres < pres_min) Il (pres > pres_max)) {

else {

}..

[pres = Sym,; pres_min = MIN; pres_max = MAX] [path condition PC: TRUE]

}

}

if ((pres < pres_min) ||

(pres > pres_max)) {

[PC,: Sym,< MIN]

se {

}

}

if ((pres < pres_min)) |l

(pres > pres_max)) {

[PC,: Sym, > MAX]

else {

}

if ((pres < pres_min) ||
(pres > pres_max)) {

} else {

[PC,: Sym, >= MIN &&
Sym, <= MAX

Solve path conditions PC,, PC,, PC, - test inputs

Applications

« NASA control software
— Manual testing: time consuming (~1 week)
— Guided random testing could not obtain full coverage
— JPF-SE
» Generated ~200 tests to obtain full coverage
» Total execution time is < 1 min
« Found major bug in new version
« K9 Rover Executive
— Executive developed at NASA Ames
— Automated plan generation based on CRL grammar + symbolic constraints
— Generated hundreds of plans to test Exec engine

— Comk])ining Test Case Generation and Runtime Verification [journal TCS,
2005

« Test input generation for Java classes:
— Black box, white box [ISSTA’04, ISSTA’06]

Symbolic Execution

King [Comm. ACM 1976]

Analysis of programs with unspecified inputs
— Execute a program on symbolic inputs

Symbolic states represent sets of concrete states

For each path, build a path condition

— Condition on inputs — for the execution to follow that path

— Check path condition satisfiability — explore only feasible paths
Symbolic state

— Symbolic values/expressions for variables

— Path condition
— Program counter

Example — Standard Execution
Code that swaps 2 integers

int x, y;

if (x> y) {
X=X+Y;
y=X-Y;
X=X-Y;
if (x>y)

assert false;

Concrete Execution Path

x=1,y=0
J

1 >0 ?true
T

x=1+0=1
T

y=1-0=1
T

x=1-1=0

T
0>1?false

Example — Symbolic Execution

Code that swaps 2 integers Symbolic Execution Tree

path condition

: ¥
mnt x, y; \[PC:true]X =X,y = Y\
1
if (x>y) { [PC:true] X>Y ?
fglse ——— True,
X=X+Y; [PC:XSY]END [PC:X>Y]x= X+Y
1
y=x-y; [PC:X>Y]y = X+Y-Y = X
X=X-Y; [PC:X>Y]x = X+Y-X = Y
. J
if (x>y) [PC:X>Y]Y>X ?
false — —_ true
assert false; [PC:X>YAYSXJEND [PC:X>YAY>X]END
| False!

Generalized Symbolic Execution

JPF — SE handles

— Dynamically allocated data structures

— Arrays

— Numeric constraints

— Preconditions

— Recursion, concurrency, etc.
Lazy initialization for arrays and structures [TACAS'03, SPIN'05]
Java PathFinder (JPF) used

— To generate and explore the symbolic execution tree

— Non-determinism handles aliasing

« Explore different heap configurations explicitly

— Off-the-shelf decision procedures check path conditions
« Model checker backiracks if path condition becomes infeasible

Subsumption checking and abstraction for symbolic states

NullPointerException

class Node { =
int elem;
Node next; < —>null none == @—>nut>
Node swapNode() { none —>
pilacsd L oulb,

if (elem > next.elem) { EO <= El =

Node t = next;

Itn ﬁ)e(tx: :Phe.;(t EQ—ED— null EO>El = (ED—*EQ— null
return t;
} EO—ED EO>El = ED—EO
return this;
} €9 @ EO>El = @'{@

}
E0> El = ED—KED—X2D—if

Lazy Initialization (illustration)

consider executing
next = t.next;

next next *
Precondition: acyclic list
nex'bnmft next — next —_nex * Xt 2 "
0P e ext Eoien

‘)@/D\—}\m‘;ll nexnex

Implementation

* |nitial implementation
— Done via instrumentation

— Programs instrumented to enable JPF to perform
symbolic execution

— General: could use/leverage any model checker
* Decision procedures used to check satisfiability
of path conditions

— Omega library for integer linear constraints
— CVCLite, STP (Stanford), Yices (SRI)

State Matching: Subsumption Checking

« Performing symbolic execution on looping programs
— May result in an infinite execution tree

« Perform search with limited depth

« State matching — subsumption checking
[SPIN’06, J. STTT to appear]
— Obtained through DFS traversal of “rooted” heap configurations
* Roots are program variables pointing to the heap
— Unique labeling for “matched” nodes
— Check logical implication between numeric constraints

Stored state:

New state:

E,>E, A
E,>E; A
E,<E, A
E,>E,

Normalized using existential quantifier elimination

Set of concrete
states represented
by stored state

Ul

Set of concrete
states represented
by new state

Abstract Subsumption

Symbolic execution with subsumption checking
— Not enough to ensure termination
— An infinite number of symbolic states

Our solution

— Abstraction
» Store abstract versions of explored symbolic states
« Subsumption checking to determine if an abstract state is re-visited
» Decide if the search should continue or backtrack

— Enables analysis of under-approximation of program behavior

— Preserves errors to safety properties/ useful for testing
Automated support for two abstractions:

— Shape abstraction for singly linked lists

— Shape abstraction for arrays

— Inspired by work on shape analysis (e.g. [TVLA])

No refinement!

Abstractions for Lists and Arrays

« Shape abstraction for singly linked lists

— Summarize contiguous list elements not pointed to by program
variables into summary nodes

— Valuation of a summary node
 Union of valuations of summarized nodes

— Subsumption checking between abstracted states
« Same algorithm as subsumption checking for symbolic states
« Treat summary node as an “ordinary” node

« Abstraction for arrays
— Represent array as a singly linked list
— Abstraction similar to shape abstraction for linked lists

Abstraction for Lists

Symbolic states Abstracted states

this nex'r nex'r @ nex * this 1 nefo nem;”; rox *
7 P
" n

E,=V,AE,=V, AE;=V,

PC: VysvAV,sv
PC: VysvAV,sv

Unmatched! U

O O e T D= =
" n

E,=VoA (E,=V,vE,=V,) AE;=V,

PC: VosvAV,SvAaV,Sv

PC: VysvAV,SvAV,Sv

Applications of JPF-SE

« Test input generation for Java classes [ISSTA'04,’06]

— Black box
« Run symbolic execution on Java representation of class
invariant

— White box
« Run symbolic execution on Java methods

« Use class invariant as pre-condition
— Test sequence generation
* Proving program correctness with generation of loop
invariants [SPIN'04]
» Error detection in concurrent software
« Test input generation for NASA flight control software

Test Sequence Generation for Java Containers

« (Containers — available with JPF distribution
— Binary Tree
— Fibonacci Heap
— Binomial Heap
— Tree Map

« EXxplore method call sequences

— Match states between calls to avoid generation of redundant
states

— Abstract matching on the shape of the containers

« Test input — sequence of method calls
BinTree t = new BinTree();
t.add (1) ;
t.add (2);
t.remove (l);

Testing Java Containers

« Comparison
— Explicit State Model Checking (w/ Symmetry Reductions)
— Symbolic Execution
— Symbolic/Concrete Execution w/ Abstract Matching
— Random Testing

Testing coverage
— Statement, Predicate

Results
— Symbolic execution worked better than explicit model checking
— Model checking with shape abstraction

« Good coverage with short sequences
« Shape abstraction provides an accurate representation of containers

— Random testing
« Requires longer sequences to achieve good coverage

Test Input Generation for NASA Software

Abort logic (~600 LOC)

Checks flight rules, if violated issues abort

Symbolic execution generated 200 test cases
» Covered all flight rules/aborts in a few seconds, discovered errors

Random testing covered only a few flight rules (no aborts)
Manual test case generation took ~20 hours

Integration of Automated Test Generation with End-to-end Simulation

JPF—SE: essentially applied at unit level

Input data is constrained by environment/physical laws
« Example: inertial velocity can not be 24000 ft/s when the geodetic altitude is O ft

Need to encode these constraints explicitly
Use simulation runs to get data correlations

As a result, we eliminated some test cases that were impossible due to
physical laws, for example

Related Approaches

Korat: black box test generation [Boyapati et al. ISSTA'02]

Concolic execution [Godefroid et al. PLDI'05, Sen et al.
ESEC/FSE’05]

— DART/CUTE/|CUTE/...
Concrete model checking with abstract matching and refinement
[CAV'05]
Symstra [Xie et al. TACAS’05]
Execution Generated Test Cases [Cadar & Engler SPIN'05]

Testing, abstraction, theorem proving: better together! [Yorsh et al.
ISSTA'06]

SYNERGY: a new algorithm for property checking [Gulavi et al.
FSE’06]

Feedback directed random testing [Pacheco et al. ICSE’07]

¥ s \ .
(e 2 Ly ‘

Variably Inter-procedural Program Analysis
for Runtime Error Detection

« [ISSTA’07] Willem Visser, Aaron Tomb, and Guillaume Brat

« Dedicated tool to perform symbolic execution for Java programs
— Does not use JPF

— Can customize
» Procedure call depth
» Max size of path condition
« Max number of times a specific instruction can be revisited during the
analysis
« Unsound and incomplete

— Generated test cases are run in concrete execution mode to see if they
correspond to real errors

— “Symbolic execution drives the concrete execution”

Variably Inter-procedural Program Analysis
for Runtime Error Detection

Applied to 6 small programs and 5 larger programs (including JPF
38538 LOC, 382 Classes, 2458 Methods)

Varied:
— Inter-procedural depth: 0, 1 and 2
— Path Condition size: 5, 10, 15, 20 and 25
— Instruction revisits: 3, 5, and 10
Results:

— Found known bugs

— Increasing the call depth does not necessarily expose errors, but decreases the
number of false warnings

Checking feasibility of path conditions

— Takes a lot of time (up to 40% in some of the larger applications)

— Greatly helps in pruning infeasible paths/eliminating false warnings
More interesting results — see the paper

Current and Future Work

New symbolic execution framework

Moved inside JPF
Non-standard interpretation of bytecodes

Symbolic information propagated via attributes associated with program
variables, operands, etc.

Uses Choco (pure Java, from <sourceforge>) — for linear/non-linear integer/real
constraints

Available from <javapathfinder.sourceforge.net>

Start symbolic execution from any point in the program
Compositional analysis

Use symbolic execution to compute procedure summaries

Integration with system level simulation

Use system level Monte Carlo simulation to obtain ranges for inputs

Test input generation for UML Statecharts

Recent JPF extension

Use symbolic execution to aid regression testing
Apply to NASA software ...

Thank you!

JPF - SE

JPF

formula

A

y

satisfiable/unsatisfiable

Generic Decision Procedure Interface

Omega
Maryland

CVClLite
Stanford

STP
Stanford

Yices
SRI

Communication Methods

e JPF and the Interface code 1s in Java

— Decision procedures are not in Java, mainly C/C++ code

* Various different ways of communication
— Native: using JNI to call the code directly

— Pipe: start a process and pipe the formulas and results back and
forth

— Files: same as Pipe but now use files as communication method
* Optimizations:
— Some decision procedures support running in a incremental mode

where you do not have to send the whole formula at a time but just
what was added and/or removed.

— CVClite, Yices

Decision Procedure Options

+symbolic.dp=
omega.file

omega.pipe
omega.native
omega.native.inc
e ...inc - with table optimization
yices.native
yices.native.inc
yices.native.incsolve
e ...incsolve - Table optimization and incremental solving
cvcl.file
cvcl.pipe
cvcl.native
cvcl.native.inc
cvcl.native.incsolve
stp.native

If using File or Pipe one must also set

Symbolic.<name>.exe to the executable binary for the DP

For the rest one must set LD_LIBRARY PATH to where the DP libraries are stored

Extensions/symbolic/CSRC

Currently everything works under Linux and only CVCLite under Windows

Symbolic.cvclite.exe = cvclite.exe must be set with CVClite.exe in the Path

35

30

25

20

15

10

Results TCAS

[J omega.pipe

B omegad.file

M cvcl.pipe

[cvcl.file

[omega.native

H omega.native.inc

B cvcl.native

[J cvcel.native.inc

B cvcl.native.incsolve
[yices.native

[yices.native.inc

[yices.native.incsolve
B stp.native

TCAS (2694 quesries)

800 -

700

600 -

500

400"

300

200"

100

RE

Results reel\/lap

TreeMap size 6 (83592 queries)

[] omega.pipe

B omega.file

B cvcl.pipe

[cvcl.file

H omega.native

B omega.native.inc
B cvcl.native

[] cvel.native.inc

B cvcl.native.incsolve
[] yices.native

[yices.native.inc

[yices.native.incsolve

