
GenUTest: A Unit Test
and Mock Aspect
Generation Tool

Benny Pasternak
Shmuel Tyszberowicz
Amiram Yehudai

Tel Aviv University

HVC 2007, October 25, 2007

�

Agenda

� Motivation
� Example
� Implementation
� Experimentation
� Conclusion

�

Motivation

� Assumption #1 – Unit tests are good �

� Assumption #2 – Writing effective unit tests is a hard
and tedious process
� At maintenance phase, writing tests from scratch is not

considered cost effective �
� Corollary: Maintenance remains a difficult process

� Goal: Automatically generate unit tests for projects in
maintenance phase

�

Example

� Developers are asked to create unit tests for an
existing software project

� StackInt is an implementation of integers’ stack,
with the operations:
� Push
� Pop
� Top
� Empty
� Reverse

�

Example

� Goal is to test StackInt comprehensively
and in isolation

� Comprehensiveness – unit test should
exercise all class methods and achieve
high code coverage rate

� Isolation – dependent objects (e.g.,
Logger, Serializer) should not be tested

�

Example: Comprehensiveness

StackInt

push(int)

int pop()

int top()

bool empty()

reverse()

Unit Test

test1()

.

.

testn()

test2()

�

Example: Isolation

Logger

Serializer

StackInt

push(int)

int pop()

int top()

bool empty()

reverse()

LinkedList
MockLinkedList

MockLogger

MockSerializer

Unit Test

test1()

test2()

.

.

testn()

�

Obtaining Test Cases From
Existing Tests
� System/Module test

that exercises
IntStack as follows:

� Test can be used to
obtain test cases for
unit tests

stack
IntStack:

new()

push(2)

push(3)

reverse()

addFirst(2)

addFirst(3)

lst
LinkedList:

2

pop()
removeFirst()

2

new()

…

�

GenUTest

� Captures and records execution of IntStack
during module/system tests in order to obtain
test cases

� Recorded events are used to generate unit
tests for IntStack

� Unit tests assist developers in the testing
process

	

Example – Generated Unit Test

����������	
��
�����������������

�����

�������������������
	���������������

��������������
�������
���� ���!�������
���"���� ���#���

$�������������
���%�	�&���"� ���#���

'�������������
���%�	�&���"� ���#���

(�������������
���%)���)����"� ���#�

*���������� ���+��,��'� �������
���%�����" ���#$��

-

�.�����������������)���������������

�����������)�/0	�������+��,��'1��"

����2

Unit Test Code stack
IntStack:

new()

push(2)

push(3)

reverse()

addFirst(2)

addFirst(3)

lst
LinkedList:

2

pop()
removeFirst()

2

new()

…

		

Example

Logger

Serializer

StackInt

push(int)

int pop()

int top()

bool empty()

reverse()

LinkedList

Unit Test

test1()

test2()

.

.

testn()

	�

Aspect Oriented Programming

class StackInt {

void reverse() {

LinkedList newlst = new LinkedList();
int size = lst.size();

for (int i = 0; i < size; i++) {
int elem = lst.get(i);

newlst.addFirst(elem);

}

lst = newlst;

}

int pop() {

int elem = lst.removeFirst();

return elem;

}

}

Join points
• object instantiation

• method-calls

• field setter/getter

Pointcut 1

Pointcut 2

Around Advice

print(“Before”);

execute join point

print(“After”);

print(“Before”);

print(“After”);

	�

AOP – Quick Summary

� Join points – well defined execution points in the
control flow of the program (object instantiation,
method-calls, field member access)

� Pointcut – expression that specifies a set of join
points

� Advices – code specified to execute before, after,
or around pointcuts

� Aspects – The equivalent to class. Holds pointcut
declarations and advices

	�

Example

Logger

Serializer

StackInt

push(int)

int pop()

int top()

bool empty()

reverse()

LinkedList

Unit Test

test1()

test2()

.

.

testn()

Pointcut 2

Pointcut 1

Mock Advice

mock object
behavior code

Mock Advice

mock object
behavior code

Implementation

	�

	�

Capture Phase

Inter-object
interactions logs

Capture Code

Program Code AspectJ
Compiler

• Software is instrumented
with capture functionality
at constructor-calls, method-
calls, field getter/setters

��������� 	
�������
�������������������� �
� ���� ��

signaturetarget object

signature

arguments’ valuesreturn value

, target object, arguments’ values
return value/thrown exception

Instrumented System – P’

• Attributes of interactions captured:

• Inter-object interactions are
captured and logged during
runtime

	�

Capture Phase

� Instrumentation is performed using AspectJ
� More elegant and simpler mechanism
� However, it is a weaker mechanism than

conventional instrumentation techniques that
directly access a program’s Java bytecode
� Requires the use of elegant workarounds to handle

special cases:
� non primitive arrays: obj1.peform(myArray[6]);
� string syntactic: String me = “Benny”;

	�

Generation Phase – Step I

� Given a testable event, a backtracking
algorithm recursively generates the statements
needed for executing the test

1 @Test public void testpop1() {
2 // test execution statements
3
4
5
6
7
8
9
10
11 }

IntStack IntStack_2 = new IntStack(); // #1
IntStack_2.push(2); // #2
IntStack_2.push(3); // #3
IntStack_2.reverse(); // #4
int intRetVal6 = IntStack_2.pop(); // #5

	�

Backtracking Algorithm

� Generally, in order to execute a test,
GenUTest needs to generate statements that
replay the relevant sequence of recorded
events in a correct manner
� Execution of:
intRetVal1 = obj1.process(obj2)

� Requires: obj1 and obj2 must be in the correct
state

�

Backtracking Algorithm

� Object states are represented by method-calls
sequences:
stateT(o) = (method , method , … method)

� Time is represented by a sequence number
incremented before a method begins
execution and after it finishes execution

� The interval [before, after] is called the
method-interval

t1 t2 tn
t1< t2<..< tn<T

�	

Backtracking Algorithm

� Logged interactions:

…

obj1.report()[65,80]

obj2.report()[51,64]

obj1.process(obj2)[31,50]

obj2.perform(obj3)[21,30]

obj3.initialize()[9,20]

obj2 = new Type2()[5,8]

obj3 = new Type3()[3,4]

obj1 = new Type1()[1,2]

obj3obj2obj1Method Interval

��

Backtracking Algorithm (cont)
� Generated statements:

� Algorithm may need to remove redundant statements
� Static and dynamic types of objects are stored for:

� casting – myObject = (MyObject)List.get(2);
� null values – obj1.process(null);
� static methods – System.out.println(“Hello World”);
� changes in modifier access policy – inner private class inheriting

from a public outer one

Type1 obj1 = new Type1();
Type3 obj3 = new Type3();
Type2 obj2 = new Type2();
obj3.initialize();
obj2.perform(obj3);
int intRetVal1 = obj1.process(obj2);

��

Generation Phase – Step II

� Case I – Value is returned from the call
� Generate statements that compare valuetest with valuecaptured.

� Case II – An exception is thrown
� Generate statements that expect a particular exception

1 @Test public void testpop1() {
2 // test execution statements
3
4
5
6
7
8
9 // test assertion statements
10
11 }

IntStack IntStack_2 = new IntStack(); // #1
IntStack_2.push(2); // #2
IntStack_2.push(3); // #3
IntStack_2.reverse(); // #4
int intRetVal6 = IntStack_2.pop(); // #5

assertEquals(intRetVal6,2);

��

Mock Aspect Generation

� Definitions:
� Incoming method-calls – method-calls invoked by

the unit test on the Class Under Test (CUT)
� Outgoing method-calls – method-calls invoked by

the CUT on dependent objects

Class
Under
Test

Unit
Test

Object #1
`

Object #2
`

Object #n
`

incoming method-calls outgoing method-calls

��

Mock Aspect Generation

� Definitions:
� mi(A()) – method interval of A() [BeforeA, AfterA]
� method A() contains method B() if mi(A()) contains mi(B())

[BeforeA, AfterA] [BeforeB, AfterB]

� Observations:
� method B() resides in the control flow of method A() iff

method A() contains method B()
� An outgoing method-call of the CUT is contained in exactly

one incoming method-call
�

��

Mock Aspect Generation

� Last definition �
� Outgoing(I()) is the sequence <Io1(), Io2(), …, Ion()>

� I() is an incoming method call
� Io1(), Io2(), …, Ion() are all the outgoing method-calls

contained in I()

� If method o() is contained in method I() and
method o() is the jth element in Outgoing(I())
then method o() is uniquely identified by the
pair (mi(I()), j)

��

Mock Aspect Generation –
Needed Example
� Four outgoing method-calls to

addFirst()
� mi(push(2)) is [5,8]
� Outgoing(push(2)) =

<addFirst(2)>
� addFirst(2) is uniquely

identified by <[5,8],1>

� mi(push(3)) is [9,12]
� Outgoing(push(3)) =

<addFirst(3)>
� addFirst(3) is uniquely

identified by <[9,12],1>

12

13

IntStack_2
IntStack:

new()

push(2)

push(3)

reverse()

addFirst(2)

addFirst(3)

get(0)

lst
LinkedList:

newlst
LinkedList:

get(1)

addFirst(2)

2

pop()
removeFirst()

2

5

8

9

6
7

10
11

new()

1

4

new()2
3

addFirst(3)

3

2

Class
Under
Test

Unit
Test

Object #1
`Object #2
`

Object #n

incoming method-calls outgoing method-calls

24

��

Mock Aspect Generation –
Needed Example
� Mi(reverse()) is [13,24]
� Outgoing(reverse()) =

<get(0), addFirst(3), get(1),
addFirst(2)>

� get(0) is uniquely identified
by <[13,24],1>

� addFirst(3) is uniquely
identified by <[13,24],2>

� get(1) is uniquely identified
by <[13,24],3>

� addFirst(2) is uniquely
identified by <[13,24],4>

12

13

IntStack_2
IntStack:

new()

push(2)

push(3)

reverse()

addFirst(2)

addFirst(3)

get(0)

lst
LinkedList:

newlst
LinkedList:

get(1)

addFirst(2)

2

pop()
removeFirst()

2

5

8

9

6
7

10
11

new()

1

4

new()2
3

addFirst(3)

3

2

Class
Under
Test

Unit
Test

Object #1
`Object #2
`

Object #n

incoming method-calls outgoing method-calls

24

��

Mock Aspect Generation

� Algorithm works as follows:
1. For each incoming method-call I() of the CUT, outgoing(I())

is calculated
2. Each outgoing method-call is uniquely identified
3. For each incoming method-call I() different pointcut and

advice are generated
4. A statement that sets method interval and clears the

element counter is added before the incoming method call
is invoked in the unit test

5. Bookkeeping code is added in advice
6. Backtracking algorithm is applied to mimic the behavior of

the dependent object in the advice

�

Mock Aspect Generation –
Sample Code

Integer around(): call (Object
java.util.LinkedList.get(int)) &&
restriction()

{
if (before == 13 && after == ��) {

if (elementCounter == 1) {
elementCounter++;
return 3;

}

if (elementCounter == 3) {
elementCounter++;
return 2;

}
}
thrown new RuntimeException(“Invalid
method interval”);

}

void setMI(int b, int a)
{

before = b;
after = a;
elementCounter == 1;

}

@Test public void testpop1()
{

// test execution statements
IntStack IntStack_2 = new IntStack();
IntStack_2.push(2);
IntStack_2.push(3);

StackIntMockAspect.setMI(13,24);
IntStack_2.reverse();

int intRetVal6 = IntStack_2.pop();

// test assertion statements
assertEquals(intRetVal6,2);

}

StackIntMockAspect.ajStackIntTest.java

4

3

5

5

6

6

�	

Implementation Overview

Inter-object
interactions logs

Capture Code

Program Code AspectJ
Compiler

Instrumented System – P’

Capture Phase

Unit tests &
Mock Aspects
Generator

Generation Phase Mock Aspects

Unit Tests

JUnit

Test Results

Unit Testing Phase

AspectJ
Compiler

CUT weaved with
mock advices

��

Experimentation

� Used on open source project JODE (Java
Optimize and Decompile Environment)
http://jode.sourceforge.net/

� JODE is a medium sized project ~35K loc
� Executed JODE combined with GenUTest on

a chosen input
� GenUTest generated 592 unit tests from

recorded data captured during runtime

��

Experimentation
� Measured code coverage with EclEmma

(www.eclemma.org/):
1. Execution of JODE on chosen input

Coverage is 25% of JODE’s lines of code

2. Execution of generated unit tests with JUnit
Coverage is 5.2% of JODE’s lines of code

� Current limitations and bugs may cause generation
of invalid tests
� Primary reason for differences in loc coverage rate

��

Limitations

� Partial support for inner classes and
anonymous classes

� Does not support multi-thread applications
� Support of arrays need to be improved
� Scalability and performance issues

��

Related work
� Automatic Test Factoring for Java [Saff, Artzi, Perkins, Ernst]
� Selective Capture and Replay of Program Executions [Orso,

Kennedy]

� Capture interactions between a subsystem s and the system S.
� Recorded interactions can later be used as a mock environment

- Caveat: requires instrumentation of program

� Carving Differential Unit Test Cases from System Test Cases
[Elbaum, Chin, Dwyer, Dokulil]

� Make use of concrete object states -> incurs heavy price on
performance and storage requirements

� More sensitive to change than method sequence representation

��

Related work

� Substra: A Framework For Automatic generation of
Integration Tests [Yuan, Xie]
Generates method-call sequences with random values.
Sequences are subject to constraints inferred using dynamic

analysis

� Eclipse Test & Performance Tools Platform Project
- only supports simple parameters and return value

types

��

Future Work

� Handle limitations and extend support:
Inner/Anonymous classes, multi-threaded support,
Optimize array handling, optimize performance

� Scalability – selective capturing, detect
redundant tests, discard non mutating events,
make use of concrete object states

� Research effectiveness in detecting
regression bugs

��

Thank you for listening

Questions?

