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A Common Process of FV of HW Design

A generic RTL design (VHDL, Verilog, . . . ) transformed to a
design using a given kind of gates.
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A Common Process of FV of HW Design

Transforming gate-level design into a hardware description.
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A Common Process of FV of HW Design

Given a specification and a gate-level design we can perform
formal verification (MC on a finite state systems).
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A Common Process of FV of HW Design

Problem with parametric/generic properties of design.
Motivation: How to verify parametrised hardware design
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The Main Idea

Transform RTL design to a counter automaton, specify the set
of bad states, model check the generated automaton.
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RTL Hardware Design

Register Transfer Level – RTL design provides a high-level
description of a circuit behaviour by defining the data transfer
between hardware registers and logical operations.

Logic gate – implements one of logical operations
¬,∧,∨, . . . (output depends only on the current input
combination)
Register (sequential gate) – a hardware element with
memory (output depends on the current and the past
inputs)
Signal – a wire that transfers data among combinational
and sequential gates
Component (module, entity) – an encapsulation of digital
circuit + I/O control
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Semantics of VHDL Constructs

Hardware design is described in a modular way.
entity counter is
generic ( max: integer );
port (
reset, clk: in std_logic;
cnt: out std_logic_vector(32 downto 0);
zf: out std_logic;

);
end entity;
architecture cnt_arch of counter is
begin
process (reset, clk)
begin
if (reset=’1’) then cnt <= 0;
elsif (clk’event and clk=’1’) then

if (cnt = max-1) then cnt <= 0;
else cnt <= cnt+1;
end if;

end if;
end process;
comp: entity comp32 port map ( cnt, 0, zf );

end;
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Counter Automata

A counter automaton A = (X , Q, q0, ϕ0, δ)

X – a finite set of variables (counters)
Q – a finite set of control locations
q0 ∈ Q – a designated initial location
ϕ0 – an arithmetic formula of initial assignment
δ ⊆ Q × Φ(X )×Q – a transition relation
Φ(X ) – a formula over X and X ′ (future references of
counters)

Example: Increment x modulo max + zero test
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x ′ = x + 1

x = max

x ′ = 0

x = 0

q0 q1
x ′ = x + 1
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Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton



Intermediate Behavioural Model

A direct mapping from VHDL source code to counter
automaton is too complex → introduce an intermediate
behavioural model as the “bridge”.

RTL design counter
automaton

InterBM

Steps to produce a counter automaton:

1 Normalize the VHDL code of an RTL design
2 Refine an intermediate behavioural model
3 Build the counter automaton
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RTL Design :: Normalization of VHDL Code

Goal: obtain code using registered signals (1-bit type, bit
vectors), behavioural description, assignment statement + if
stmt only

1 Variables of user defined structural types → more variables
of simple types (single bit, bit vectors).
Bit vectors (constant size) accessed bitwise → more 1-bit
signals.
Bitwise operations over parameter sized bit vectors →
more complex arithmetic operations over bit vectors

2 Structural description → behavioural description (only
process and assignment statements are allowed)

3 Non-registered signals → expressions over registered
signals

4 Conditional assignments (with, case) → if statements
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Intermediate Behavioural Model :: Definition
M = (V , T , B), where:

V – a set of variables, we use V as “references” to V :

��
v

time

v = 0 current value of v
v ′ = 1 future value
↑v = 1 positive edge ↑v = ¬v ∧ v ′

↓v = 0 negative edge ↓v = v ∧ ¬v

T : V → {bool,int} – the type of a variable

Let E be a set of expressions over V (+,−,=, 6=,≥,¬,∧, . . . ),

Let C ⊆ E be the set of boolean valued expressions.

B ⊆ C∗ × V × E is a set of behavioural rules representing
conditioned assignments (b ∈ B, b : c → v := e)

res′ → addr := 0
¬res′, ↑clk , (addr 6= max − 1) → addr := addr + 1
¬res′, ↑clk , (addr = max − 1) → addr := 0

¬res′,¬↑clk → addr := addr
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Model :: Extracting from Source Code (1/2)

RTL design
InterBM

counter
automaton

M = (V , T , B)

Variables V contain all registered signals + parameters
T (v) = bool if v is 1-bit signal,
T (v) = int if v is a bit vector or a parameter
A VHDL expression: (clk’event and clk = ’1’)
InterBM expression: ↑clk ∈ E
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Model :: Extracting from Source Code (2/2)

Behavioural rules: B ⊆ C∗ × V × E

Process if conditional statements such that every if sets
the value of only one state variable.
From every if statement, create a tree of preconditions
and expressions of the next values (missing branches
represent no change of the variable value: v ′ = v ).

Example

if c1 then
v := e1;

else
if c2 then

v := e2;
end if;

end if;
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v ′ =
0 1

0 1

c1 → v := e1
¬c1, c2 → v := e2
¬c1,¬c2 → v := v
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Model :: Environment

For model checking, we need to model the environment too.
Environment = input signals of a component. Behaviour of the
environment can be completely random representation of an
input:
ε → v := random ∈ B for v ∈ V representing input signal.
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Model → Counter Automaton

RTL design
InterBM

counter
automaton

InterBM: M = (V , T , B)
↓

Counter automaton: A = (X , Q, q0, ϕ0, δ)

the set of counters X = {v | v ∈ V , T (v) = int}
the control locations Q = {0, 1}Vq - set of all possible
evaluations of boolean variables
Vq = {v | v ∈ V , T (v) = bool}.
initial state q0, ϕ0: one must provide an additional input of
the verification process (or can be guided by heuristics)
the transition relation δ ⊆ Q × Φ(X )×Q: (cont.)
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Model → CA :: Transition Relation

1 δ := {}
2 for q1, q2 in Q do
3 actions := {}
4 for (b : c → v := e) in B do
5 if cq1,q2 6= 0 then
6 actions := actions ∪ {(cq1,q2 , v ′ = eq1,q2)}
7 δ := δ ∪ transitions(q1, actions, q2)
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¬c1 ∧ c2 ∧ a2

c1 ∧ ¬c2 ∧ a1

c1 ∧ c2 ∧ a1 ∧ a2��
��
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actions = {(cq1,q2
1 , a1), (c

q1,q2
2 , a2)}

? (line 5)

lines 3-6

line 7
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Formal Verification :: Set of Bad States

Only safety properties are taken into account → specification of
bad state(s):

1 One defines the propositional formula over component
signals defining the bad state – ebad

2 A control location qbad ∈ Q representing the bad states is
created

3 From every control location, create a transition to qbad if
there is possible true evaluation of ebad

for q in Q do
if eq

bad 6= 0 then

δ := δ ∪ {(q, eq
bad , qbad)}
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Transformation :: Summary

Counter automaton A = 〈X , Q, q0, ϕ0, δ〉

1 Divide variables to 1-bit variables
and multiple-bit ones (X )

2 Extract the behaviour from the
VHDL source code

1 Create the set of control
locations (Q)

2 Create the transition relation (δ)

3 Specification of the initial state
and the initial evaluation

Evaluation of 1-bit variables
represents the initial location
(q0)

4 Create the bad state and the
transitions to that state

Visualisation
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Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton



Transformation :: Summary

Counter automaton A = 〈X , Q, q0, ϕ0, δ〉

1 Divide variables to 1-bit variables
and multiple-bit ones (X )

2 Extract the behaviour from the
VHDL source code

1 Create the set of control
locations (Q)

2 Create the transition relation (δ)

3 Specification of the initial state
and the initial evaluation

Evaluation of 1-bit variables
represents the initial location
(q0)

4 Create the bad state and the
transitions to that state

Visualisation

���
���
���
���

���XXXX
Z

Z
Z

Z
Z

PPPPP

�����

�
�

�
�

�

ϕ0
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Formal Verification :: Experiments

Pentium4 2.8Ghz, 512MB, Python interpreter for translator.

Component |Q| |δ| |X | Trans. ARMC [1]
Counter 5 13 1 < 1s < 1s
Register 9 45 1 1s < 1s
SynLIFO 65 985 1 1m13s 2.7s
AsFIFO (Status) 65 5484 11 3m51s 26m58s
AsFIFO (FE) 65 5075 11 3m31s 1h17m

Safety properties like:
bad = ¬RESET ∧ CLK ∧ EN ∧ (OUT 6= DATA)

[1] A. Podelski, A. Rybalchenko. ARMC: The Logical Choice for
Software Model Checking with Abstraction Refinement. PADL 2007.
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Conclusions

We have proposed the method of FV of parametrised HW
components through the counter automata.
Future work/ideas:

Reduction of a size of generated automaton
Allow bit-wise operations on integers (often used in HW
design)
Experiments with more components and more tools
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Model :: Appendix A

Environment: In the case of T (v) = bool:
ε → v := v
ε → v := ¬v

For a simpler construction of CA from InterBM,
if T (v) = bool:

c → v := e =⇒ c, v ′ = e → v := e
ebad : using references to current variable values (with no
v ′, ↑v , or ↓v reference)

Example of Behavioural rules

res′ → addr := 0
¬res′, ↑clk , (addr 6= max − 1) → addr := addr + 1
¬res′, ↑clk , (addr = max − 1) → addr := 0

¬res′,¬↑clk → addr := addr
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Model :: Appendix B

Behavioural rules: B ⊆ C∗ × V × E
1 Transparent × synchronous mode: For the path from root

to leaf: If there is no ↑v (transparent mode): all variable
references point to their future values. If there is ↑v
(synchronous mode): all variable references in expressions
of subsequent nodes point to their current values

2 Transform such a tree to the set of behavioural rules

Example

if c1 then
v := e1;

else
if c2 then

v := e2;
end if;

end if;
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c1 → v := e1
¬c1, c2 → v := e2
¬c1,¬c2 → v := v
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