
Verifying Parametrised Hardware Designs
via Counter Automata

A. Smrčka1 T. Vojnar1

1Faculty of Information Technology
Brno University of Technology

Haifa Verification Conference 2007, Haifa, IL

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Outline

1 Motivation
2 Basics of RTL design and VHDL
3 Counter automata
4 Transformation VHDL → counter automata
5 Bad state specification
6 Experiments + conclusions

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

A Common Process of FV of HW Design

A generic RTL design (VHDL, Verilog, . . .) transformed to a
design using a given kind of gates.

RTL design

synthesis

gate-level
design

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

A Common Process of FV of HW Design

Transforming gate-level design into a hardware description.

RTL design

hardware

synthesis

gate-level
design

place & route

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

A Common Process of FV of HW Design

Given a specification and a gate-level design we can perform
formal verification (MC on a finite state systems).

RTL design

hardware

Ok / bug

synthesis

gate-level
design

place & route

FV

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

A Common Process of FV of HW Design

Problem with parametric/generic properties of design.
Motivation: How to verify parametrised hardware design

RTL design

hardware

Ok / bug

synthesis

gate-level
design

place & route

FV

generic

concrete

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

The Main Idea

Transform RTL design to a counter automaton, specify the set
of bad states, model check the generated automaton.

RTL design

hardware

Ok / bug

Ok / bug

counter
automaton

synthesis

gate-level
design

place & route

FV

transformation

FV

generic

concrete

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

RTL Hardware Design

Register Transfer Level – RTL design provides a high-level
description of a circuit behaviour by defining the data transfer
between hardware registers and logical operations.

Logic gate – implements one of logical operations
¬,∧,∨, . . . (output depends only on the current input
combination)
Register (sequential gate) – a hardware element with
memory (output depends on the current and the past
inputs)
Signal – a wire that transfers data among combinational
and sequential gates
Component (module, entity) – an encapsulation of digital
circuit + I/O control

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Semantics of VHDL Constructs

Hardware design is described in a modular way.
entity counter is
generic (max: integer);
port (
reset, clk: in std_logic;
cnt: out std_logic_vector(32 downto 0);
zf: out std_logic;

);
end entity;
architecture cnt_arch of counter is
begin
process (reset, clk)
begin
if (reset=’1’) then cnt <= 0;
elsif (clk’event and clk=’1’) then

if (cnt = max-1) then cnt <= 0;
else cnt <= cnt+1;
end if;

end if;
end process;
comp: entity comp32 port map (cnt, 0, zf);

end;

clk

reset

cnt

zf

max

% max
(cnt+1)
cnt =

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Counter Automata

A counter automaton A = (X , Q, q0, ϕ0, δ)

X – a finite set of variables (counters)
Q – a finite set of control locations
q0 ∈ Q – a designated initial location
ϕ0 – an arithmetic formula of initial assignment
δ ⊆ Q × Φ(X)×Q – a transition relation
Φ(X) – a formula over X and X ′ (future references of
counters)

Example: Increment x modulo max + zero test

"!

"!
Z

Z
Z

Z

x < max

x ′ = x + 1

x = max

x ′ = 0

x = 0

q0 q1
x ′ = x + 1

x < max

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Intermediate Behavioural Model

A direct mapping from VHDL source code to counter
automaton is too complex → introduce an intermediate
behavioural model as the “bridge”.

RTL design counter
automaton

InterBM

Steps to produce a counter automaton:

1 Normalize the VHDL code of an RTL design
2 Refine an intermediate behavioural model
3 Build the counter automaton

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

RTL Design :: Normalization of VHDL Code

Goal: obtain code using registered signals (1-bit type, bit
vectors), behavioural description, assignment statement + if
stmt only

1 Variables of user defined structural types → more variables
of simple types (single bit, bit vectors).
Bit vectors (constant size) accessed bitwise → more 1-bit
signals.
Bitwise operations over parameter sized bit vectors →
more complex arithmetic operations over bit vectors

2 Structural description → behavioural description (only
process and assignment statements are allowed)

3 Non-registered signals → expressions over registered
signals

4 Conditional assignments (with, case) → if statements

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Intermediate Behavioural Model :: Definition
M = (V , T , B), where:

V – a set of variables, we use V as “references” to V :

��
v

time

v = 0 current value of v
v ′ = 1 future value
↑v = 1 positive edge ↑v = ¬v ∧ v ′

↓v = 0 negative edge ↓v = v ∧ ¬v

T : V → {bool,int} – the type of a variable

Let E be a set of expressions over V (+,−,=, 6=,≥,¬,∧, . . .),

Let C ⊆ E be the set of boolean valued expressions.

B ⊆ C∗ × V × E is a set of behavioural rules representing
conditioned assignments (b ∈ B, b : c → v := e)

res′ → addr := 0
¬res′, ↑clk , (addr 6= max − 1) → addr := addr + 1
¬res′, ↑clk , (addr = max − 1) → addr := 0

¬res′,¬↑clk → addr := addr

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Intermediate Behavioural Model :: Definition
M = (V , T , B), where:

V – a set of variables, we use V as “references” to V :

��
v

time

v = 0 current value of v
v ′ = 1 future value
↑v = 1 positive edge ↑v = ¬v ∧ v ′

↓v = 0 negative edge ↓v = v ∧ ¬v

T : V → {bool,int} – the type of a variable

Let E be a set of expressions over V (+,−,=, 6=,≥,¬,∧, . . .),

Let C ⊆ E be the set of boolean valued expressions.

B ⊆ C∗ × V × E is a set of behavioural rules representing
conditioned assignments (b ∈ B, b : c → v := e)

res′ → addr := 0
¬res′, ↑clk , (addr 6= max − 1) → addr := addr + 1
¬res′, ↑clk , (addr = max − 1) → addr := 0

¬res′,¬↑clk → addr := addr

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Model :: Extracting from Source Code (1/2)

RTL design
InterBM

counter
automaton

M = (V , T , B)

Variables V contain all registered signals + parameters
T (v) = bool if v is 1-bit signal,
T (v) = int if v is a bit vector or a parameter
A VHDL expression: (clk’event and clk = ’1’)
InterBM expression: ↑clk ∈ E

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Model :: Extracting from Source Code (2/2)

Behavioural rules: B ⊆ C∗ × V × E

Process if conditional statements such that every if sets
the value of only one state variable.
From every if statement, create a tree of preconditions
and expressions of the next values (missing branches
represent no change of the variable value: v ′ = v).

Example

if c1 then
v := e1;

else
if c2 then

v := e2;
end if;

end if;

��
��

c1

e1��
��

c2

v e2

�
�

@
@

�
�

@
@

v ′ =
0 1

0 1

c1 → v := e1
¬c1, c2 → v := e2
¬c1,¬c2 → v := v

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Model :: Environment

For model checking, we need to model the environment too.
Environment = input signals of a component. Behaviour of the
environment can be completely random representation of an
input:
ε → v := random ∈ B for v ∈ V representing input signal.

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Model → Counter Automaton

RTL design
InterBM

counter
automaton

InterBM: M = (V , T , B)
↓

Counter automaton: A = (X , Q, q0, ϕ0, δ)

the set of counters X = {v | v ∈ V , T (v) = int}
the control locations Q = {0, 1}Vq - set of all possible
evaluations of boolean variables
Vq = {v | v ∈ V , T (v) = bool}.
initial state q0, ϕ0: one must provide an additional input of
the verification process (or can be guided by heuristics)
the transition relation δ ⊆ Q × Φ(X)×Q: (cont.)

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Model → CA :: Transition Relation

1 δ := {}
2 for q1, q2 in Q do
3 actions := {}
4 for (b : c → v := e) in B do
5 if cq1,q2 6= 0 then
6 actions := actions ∪ {(cq1,q2 , v ′ = eq1,q2)}
7 δ := δ ∪ transitions(q1, actions, q2)

��
��

0 0 ��
��

0 1

¬c1 ∧ c2 ∧ a2

c1 ∧ ¬c2 ∧ a1

c1 ∧ c2 ∧ a1 ∧ a2��
��

��
��

0 10 0

x=0
y=0

x’=0
y’=1

q1 q2

actions = {(cq1,q2
1 , a1), (c

q1,q2
2 , a2)}

? (line 5)

lines 3-6

line 7

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Formal Verification :: Set of Bad States

Only safety properties are taken into account → specification of
bad state(s):

1 One defines the propositional formula over component
signals defining the bad state – ebad

2 A control location qbad ∈ Q representing the bad states is
created

3 From every control location, create a transition to qbad if
there is possible true evaluation of ebad

for q in Q do
if eq

bad 6= 0 then

δ := δ ∪ {(q, eq
bad , qbad)}

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Transformation :: Summary

Counter automaton A = 〈X , Q, q0, ϕ0, δ〉

1 Divide variables to 1-bit variables
and multiple-bit ones (X)

2 Extract the behaviour from the
VHDL source code

1 Create the set of control
locations (Q)

2 Create the transition relation (δ)

3 Specification of the initial state
and the initial evaluation

Evaluation of 1-bit variables
represents the initial location
(q0)

4 Create the bad state and the
transitions to that state

Visualisation

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Transformation :: Summary

Counter automaton A = 〈X , Q, q0, ϕ0, δ〉

1 Divide variables to 1-bit variables
and multiple-bit ones (X)

2 Extract the behaviour from the
VHDL source code

1 Create the set of control
locations (Q)

2 Create the transition relation (δ)

3 Specification of the initial state
and the initial evaluation

Evaluation of 1-bit variables
represents the initial location
(q0)

4 Create the bad state and the
transitions to that state

Visualisation

���
���
���
���

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Transformation :: Summary

Counter automaton A = 〈X , Q, q0, ϕ0, δ〉

1 Divide variables to 1-bit variables
and multiple-bit ones (X)

2 Extract the behaviour from the
VHDL source code

1 Create the set of control
locations (Q)

2 Create the transition relation (δ)

3 Specification of the initial state
and the initial evaluation

Evaluation of 1-bit variables
represents the initial location
(q0)

4 Create the bad state and the
transitions to that state

Visualisation

���
���
���
���

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Transformation :: Summary

Counter automaton A = 〈X , Q, q0, ϕ0, δ〉

1 Divide variables to 1-bit variables
and multiple-bit ones (X)

2 Extract the behaviour from the
VHDL source code

1 Create the set of control
locations (Q)

2 Create the transition relation (δ)

3 Specification of the initial state
and the initial evaluation

Evaluation of 1-bit variables
represents the initial location
(q0)

4 Create the bad state and the
transitions to that state

Visualisation

���
���
���
���

XXXX
ϕ0

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Transformation :: Summary

Counter automaton A = 〈X , Q, q0, ϕ0, δ〉

1 Divide variables to 1-bit variables
and multiple-bit ones (X)

2 Extract the behaviour from the
VHDL source code

1 Create the set of control
locations (Q)

2 Create the transition relation (δ)

3 Specification of the initial state
and the initial evaluation

Evaluation of 1-bit variables
represents the initial location
(q0)

4 Create the bad state and the
transitions to that state

Visualisation

���
���
���
���

���XXXX
Z

Z
Z

Z
Z

PPPPP

�����

�
�

�
�

�

ϕ0

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Formal Verification :: Experiments

Pentium4 2.8Ghz, 512MB, Python interpreter for translator.

Component |Q| |δ| |X | Trans. ARMC [1]
Counter 5 13 1 < 1s < 1s
Register 9 45 1 1s < 1s
SynLIFO 65 985 1 1m13s 2.7s
AsFIFO (Status) 65 5484 11 3m51s 26m58s
AsFIFO (FE) 65 5075 11 3m31s 1h17m

Safety properties like:
bad = ¬RESET ∧ CLK ∧ EN ∧ (OUT 6= DATA)

[1] A. Podelski, A. Rybalchenko. ARMC: The Logical Choice for
Software Model Checking with Abstraction Refinement. PADL 2007.

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Conclusions

We have proposed the method of FV of parametrised HW
components through the counter automata.
Future work/ideas:

Reduction of a size of generated automaton
Allow bit-wise operations on integers (often used in HW
design)
Experiments with more components and more tools

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Model :: Appendix A

Environment: In the case of T (v) = bool:
ε → v := v
ε → v := ¬v

For a simpler construction of CA from InterBM,
if T (v) = bool:

c → v := e =⇒ c, v ′ = e → v := e
ebad : using references to current variable values (with no
v ′, ↑v , or ↓v reference)

Example of Behavioural rules

res′ → addr := 0
¬res′, ↑clk , (addr 6= max − 1) → addr := addr + 1
¬res′, ↑clk , (addr = max − 1) → addr := 0

¬res′,¬↑clk → addr := addr

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

Model :: Appendix B

Behavioural rules: B ⊆ C∗ × V × E
1 Transparent × synchronous mode: For the path from root

to leaf: If there is no ↑v (transparent mode): all variable
references point to their future values. If there is ↑v
(synchronous mode): all variable references in expressions
of subsequent nodes point to their current values

2 Transform such a tree to the set of behavioural rules

Example

if c1 then
v := e1;

else
if c2 then

v := e2;
end if;

end if;

��
��

c1

e1��
��

c2

v e2

�
�

@
@

�
�

@
@

v ′ =
0 1

0 1

c1 → v := e1
¬c1, c2 → v := e2
¬c1,¬c2 → v := v

Smrčka, Vojnar (FIT BUT, CZ) Hardware Design→ Counter Automaton

