
HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

From Hardware Verification to Software Verification
Re-use and Re-learn

Haifa Verification Conference
October 25, 2007

Aarti Gupta
agupta@nec-labs.com

NEC Laboratories America
Princeton, USA

Acknowledgements:
Pranav Ashar, Malay Ganai, Franjo Ivancic, Vineet Kahlon,

Sriram Sankaranarayanan, Ilya Shlyakhter, Chao Wang, Zijiang Yang

2HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Outline

Background
– Model checking
– Hardware verification
– Software Verification

Re-use & Re-learn
– Symbolic model checking
– Exploiting high-level structure
– Supplement (with a little help from cheaper friends)
– Verify at intermediate functions
– Model transformations

Practical Experience
Lessons Learned
Challenges

3HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Model Checking (MC)

Design

Property

Model
Checker

Yes
Witness

No
Counter-exampleEnvironment

Model checker: Checks whether the design satisfies the property by exhaustive
state space traversal [Clarke et al. 82]
Advantages

– Automatic verification method
– Provides error traces for debugging
– No test vectors required: all inputs are automatically considered
– Sound and complete (no false proofs, no false bugs)

Practical Issues
– State space explosion (exponential in number of state elements)
– The system needs to be closed

i.e. we need to model the environment (constraints on design inputs, or models)

4HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Symbolic Hardware Circuit Model

(a+c’)(b+c’)(a’+b’+c)

(a’ +c)(b’ +c)(a+b+c’)

(a+b’)(a’+b)

a
b

c

ba

a
b

c

Gates CNF

X

Output logicNext state logic
Primary
Inputs

Primary
Outputs

W

Y

Present
State

O

Next
State

Latches (Registers)

Design is modeled as a Labeled Transition System (LTS): (S, s0, TR, L)
Symbolic LTS Representation

– Set of States S is encoded by a vector of binary variables X (outputs of latches)
– Initial state s0 comprises initial values of the latches
– Transition relation TR is implemented as next state logic (Boolean gates)

• Can also be represented in Conjunctive Normal Form (CNF)
– Labeling L is implemented as output logic (Boolean gates)

Note: Size of state space S = 2 |X|

5HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Property Verification

Proof Approach: Model Checking
– Exhaustive state space exploration
– Maintains a representation of visited states (explicit, BDDs, circuit graphs)
– Very expensive for medium to large-size LTS

Falsification Approach: Bounded Model Checking
– State space search for bugs (counter-examples) only
– Typically does not maintain representation of visited states
– Less expensive, but needs good search heuristics

Bounded Model Checking
Is there is a path from
the initial state s0
to the bad state(s)?

Model Checking AGp
Does the set of states
reachable from s0
contain a bad state(s)?

s0 !p

TR
Step 1

TR
Step 2

TR
Step 4

TR
Step 3

!p?

6HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Bounded Model Checking (BMC)

Main idea: Unroll transition relation logic up to bounded length

TR
Step n

TR
Step n-1

inputs

initial
state

TR
Step 1

TR
Step 2

next_state[n-1] =
present_state[n]Time Frame Expansion

BMC problem translated to a Boolean formula f [Biere et al. 00]
– A bug exists of length k SAT(fk) (formula is satisfiable)
– Satisfiability of fk is checked by a standard SAT solver

Falsification: Can check for bounded length bugs
– Scales much better than symbolic model checking with Binary Decision Diagrams (BDDs)
– BDDs: 100s of latches, SAT-based BMC: 10k of latches

Proofs by induction with increasing depth [Sheeran et al. 00]

– Works well with additional reachability invariants [Gupta et al. 03]
Proof-based abstraction for unbounded MC [McMillan & Amla 03, Gupta et al. 03]
Interpolant-based model checking [McMillan 03, McMillan 06]

7HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

VeriSol Symbolic Model Checking Platform

Distributed BMC
Find bugs on network

of workstations

BMC + PBIA
Reduce model size by
identifying & removing

irrelevant logic

BMC + EMM
Find bugs in embedded
memory systems using
Efficient Memory Model

BMC + EMM + PBIA
Reduce model size by

identifying & removing
irrelevant memories

and logic

Prover
Proves correctness of

properties using
Unbounded Model

Checking and Induction Efficient
Representation

(circuit simplifier)

Boolean Solver
(SAT, BDD)

BMC
Find bugs
efficiently

Engines for finding Bugs

Engines for finding Proofs

[Ganai et al. 05]

New: SMT solvers, BDDs+Omega

BMC: Bounded Model Checking
UMC: Unbounded Model Checking
EMM: Efficient Memory Modeling
PBIA: Proof-Based Iterative Abstraction

8HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Industrial Case Study: Multiple Verification Engines

Interesting large problems are within reach!

Find Bugs
(BMC or D-BMC)

Identify & remove
irrelevant

logic
(BMC + PBIA)

Prove property
correct
(UMC)

13K FFs, 0.5M gates
1 safety property

BMC
120 depth in 1643s

(memory out)

Distributed-BMC
323 depth in 8643s
With 5 PCs on LAN

Abstract Model
71FFs, 1K gates

(6 iterations, 1200s)

Proved Correct
(30s)

9HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Re-use Symbolic Model Checking Platform for SW

1: void bar() {
2: int x = 3 , y = x-3 ;
3: while (x <= 4) {
4: y++ ;
5: x = foo(x);
6: }
7: y = foo(y);
8: }
9:
10: int foo (int l) {
11: int t = l+2 ;
12: if (t>6)
13: t - = 3;
14: else
15: t --;
16: return t;
17: }

Huge gap !

Challenges:
• Rich data types
• Structures and arrays
• Pointers and pointer arithmetic
• Dynamic memory allocation
• Procedure boundaries and recursion
• Concurrent programs

C Program

W

X

Latches

Y

O

Present State Next State

Transition Relation

Symbolic LTS Model
M = (S,s0,TR,L)

10HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Intermediate Representation

Control Flow Graph
– Language-independent intermediate

representation
– Provides the basis for several optimizations

(compilers, program analysis)
– Allows separation of model building phase from

model checking phase

C Program

CFG
Control Flow

Graph

W

X

Latches

Y

O

Present State Next State

Transition Relation

Symbolic LTS Model
M = (S,s0,TR,L)1: void bar() {

2: int x = 3 , y = x-3 ;
3: while (x <= 4) {
4: y++ ;
5: x = foo(x);
6: }
7: y = foo(y);
8: }
9:
10: int foo (int l) {
11: int t = l+2 ;
12: if (t>6)
13: t - = 3;
14: else
15: t --;
16: return t;
17: }

11HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Automatic Translation of CFG to Symbolic LTS

What about the challenges?
– Rich data types, structures and arrays: Consider only finite integer types, and

convert/flatten other types
– Pointers and pointer arithmetic: Convert to a pointer-less description

• Similar to work in high-level synthesis [Semeria & De Micheli 98]
– Dynamic memory allocation: To obtain a finite state verification model, consider

bounded data only
– Procedure boundaries and recursion: To obtain a finite state verification model,

consider bounded recursion only
• Alternative: Pushdown systems, Boolean programs [Ball & Rajamani 01]

– Concurrent programs: Each thread is represented by a separate CFG, with
shared variables

s = x+2;
t = x-1;

t- = 3; t--;

s += t;

t > 6 ! (t > 6)

CFG ~ finite (control + data) state machine
Basic blocks ~ control states (encoded using pc)
Values of program variables ~ data states
Guarded transitions ~ transition relation for control states
Parallel assignments ~ transition relation for data states

Re-use: Bit-level accurate models for precision
(e.g. 32-bit adders, shifters, etc.)

12HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Outline

Background
Model checking
Hardware verification
Software Verification

Re-use & Re-learn
– Symbolic model checking
– Exploiting high-level structure
– Supplement (with a little help from cheaper friends)
– Verify at intermediate functions
– Model transformations

Practical Experience
Lessons Learned
Challenges

13HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Symbolic Model Checking of Software Models

Back-end verification is performed by the VeriSol platform

Falsification: Bugs (reachability of error labels) can be found by using
SAT-based BMC on the software models [Ivancic et al. 04]

– Unrolling of TR corresponds to a block-wise execution on the CFG
– SAT-based search relatively insensitive to number of variables

• Due to effective conflict-driven learning and related decision heuristics
– Difference from HW: Depth of unrolling required to reach bugs may be very

high (need to start from main()?)

Verification: Proofs can be derived by using SAT-based or BDD-based
unbounded model checking on the software models

– Methods that save sets of reachable states tend to blow up
– Difference from HW: number of state variables in model is much larger

(number of int variables * 32?)

14HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Re-learn: Exploit Structure of SW models

Use customized SAT heuristics for SW models [Ivancic et al. 04]

– Observation: Only a single basic block is active in a sequential program
• Use a binary-encoded program counter variable (rules out other values)

– Observation: Program control location determines values on data
• Heuristic pc: Make decisions on “program counter” variables first (give

them a higher score than other program variables)
• Heuristic one-hot: Allow word-level decisions on the program counter, by

using a one-hot encoding (e.g. B5 = (pc == 000101))
– Observation: Each basic block has relatively few predecessors

• Heuristic pred: Add (redundant) predecessor constraints to prune search
– Observation: Each basic block has relatively few successors

• Heuristic succ: Add (redundant) successor constraints to prune search

For BDD-based model checking, exploit the sequential nature to use a
disjunctively decomposed MC algorithm [Wang et al. 06]

– Faster and more memory-efficient than conjunctive BDD-based MC

15HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Results for PPP Case Study

Learning in SAT

Unrolling depth

Ti
m

e
pe

r d
ep

th ------ standard SAT heuristics
------ higher score for pc
------ one-hot encoding of pc
------ predecessor constraints

C
um

ul
at

iv
e

tim
e

Unrolling depth

16HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Re-learning Strategies

Issues so far
– Bit-accurate models from CFGs may be too large

• even after property-based program slicing
– Depth of unrolling required may be too high

Strategies
Use customized heuristics for SAT or BDDs
Use light-weight analyses on CFGs to reduce model size

• Range analysis for bounding #bits per variable
– For example, for (i=0; i<10; i++) does not require 32 bits to represent i

• Constant folding
– Very effective for our memory modeling, which assigns locations to variables

Use predicate abstraction and refinement [Slam, Blast, CBMC/Satabs]
• Despite localization techniques, this frequently blows up [Jain et al. 05]
• Does not work well on programs with pointers

→ Use cheaper static analysis methods to supplement model checking
• Static invariant generation

→ Verify starting from intermediate functions, not entire program from main()
• More scalable

→ Use transformations to generate “verification friendly” models
• Provides 1-2 orders of magnitude performance improvement

17HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Supplementing Model Checking: Motivation

int A[N], B[N];

int equals () {
int i=N, j=N ;
int result=1 ;
while (i > 0) {
i--;
j--;
if (A[i] != B[j])
result = 0 ;

}
return result ;

}

int A[N], B[N];

void arrayModel () {
int i=N, j=N ; …
while (i > 0) {
i--;
j--;
if (i<0 || i>=N)
ERROR() ;

if (j<0 || j>=N)
ERROR() ;

…
}

}

Invariants:
0 ≤ i ≤ N
0 ≤ j ≤ N
i==j

Checkers
inserted

Example
– No error possible because of invariants that hold true at if-statements
– Difficult to prove by model checking (large model for large N)
– Difficult to prove by predicate abstraction refinement

• Weakest pre-condition based refinement cannot discover the relationship i==j

Such invariants can be easily (cheaply) discovered by static analysis
– e.g. by using Octagon abstract domain

18HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Static Invariant Generation

Octagon abstract domain: ± x ± y ≤ c
– Due to Antoine Miné
– Successfully used in ASTRÉE static analyzer
– Captures commonly occurring variable relationships

• Array bound accesses
– For n variables, uses O(n3) time and O(n2) space to find invariants

More expressive abstract domains can be used
– Linear invariants: more expensive

Applications in SW verification
– Invariants can prove correctness of many properties [Sankaranarayanan et al. 06]

• Array buffer overflows, null pointer dereferences, …
• Acts as a filter: reduction in # properties passed to the model checker

– Invariants can aid predicate abstraction refinement [Jain et al. 06]
• Improve performance by reducing number of refinements

– Invariants can aid bounded model checking [Ganai et al. 06]
• Improve performance by pruning SAT search space

19HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Results on Industry Programs

Octagon invariants
– Can find many proofs of correctness before invoking the model checker
– Provide overall performance improvement

Without Octagon Invariants With Octagon Invariants

KLOC # Buffer
overflow
checks

P
by
SA

P
by
SAT

B
by
SAT

Inc. Time
(sec)

P
by SA
w/
Invar

P
by
SAT

B
by
SAT

Inc. Time
(sec)

f1 0.5 64 32 9 0 23 596 64 0 0 0 15

f2 1.1 16 8 6 0 2 564 16 0 0 0 66

f3 1.1 18 8 5 2 3 572 16 0 2 0 104
f4 1.2 22 10 6 3 3 478 18 1 3 0 195
f5 1.2 10 0 0 4 6 584 6 0 4 0 401

f7 1.8 28 4 8 4 4 589 12 4 4 0 325
f6 1.6 26 8 6 8 4 579 18 0 8 0 197

f8 3.6 280 267 13 0 0 144 280 0 0 0 140

Note: P by SA = Proofs by Static Analysis, P by SAT = Proofs by SAT, B by SAT = Bugs by SAT, Inc. = Inconclusive

20HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Verifying Programs from Intermediate Functions

Ideally, deep bugs starting from the main function can be found by MC

In practice
– Model checker runs out of time/memory
– Missing function calls, global initialization
– main function contains parsers (deep recursion)

Bugs can be found at a smaller depth starting from an intermediate
function foo(..)

– Re-use: Similar to Localization Reduction [Kurshan 94]
– Issue: How to supply the context, i.e. the environment for the entry function?

main()

foo()

Function Calls

Error block

21HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Conservative Environment Abstraction

All possible states

False bug

main()

foo()

Start from an intermediate function, with a conservative environment model
– For example, input parameters can take any values
– For example, pointer parameters/globals can be aliased or non-aliased
– For example, input parameters are independent (no relationship), etc.

Many reported bugs will likely be false bugs, due to missing context
Reuse: Use these counterexamples to refine the environment iteratively
CEGER: CounterExample Guided Environment Refinement

– Specialized CEGAR: CounterExample Guided Abstraction Refinement [Clarke et al. 00]

22HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Example of Environment Model

int * x;
void main (int n)
{

int i;

if (n < 0 || n > 1024)
return;

x = malloc(size(int)*n);
if (!x) return;
init_array(x+n);
. . .

}

void init_array (int *y)
{

int *j;

for (j=x; j<y; ++j)
{

*j = 0; //error check
}
return;

}

Verification with main() as entry
– No bugs reported for array buffer overflow or null

pointer dereference at error check
Verification with init_array(..) as entry

– (Bogus) Bug reported
– Missing context: Relationship between x and y

A possible solution: Use the following stub

Model checker can automatically reason with an
(iteratively refined) stub for each entry function
Similar technique is successful in finding the well-
known array overflow bug in bc-1.06 (gnu)

void init_arrays_env (int * y)
{

env_assume(x);
env_assume(y);
int k = env_get_array_bound(x);
env_assume(y > x && y <= x + k);

}

23HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

CEGER: CounterExample Guided Environment Refinement

Not completely automated: User in the loop
– To determine whether a reported bug is false
– To provide the environment refinement

However, automated help is available from the model checker
– Counterexample trace (exhaustive/bounded search is the hard part)

• Users can examine the interface variables of interest and generalize relationships
– Projection of counterexample trace on the interface (weakest preconditions, interpolants)

• Users find it easier to modify a suggested constraint, than to come up with one
The overall flow is consistent with a check-debug-refine cycle

?

program environment
modelsspec

proof (correct)

bug (with trace)

Unknown
(error, timeout …)

stubs: for missing code, library
functions, input assumptions,
pre- and post-conditions, etc.

user-specified, or
automatically generated

all headers,
makefiles

Check-debug-refine cycle

SW Model Checker
(completely automated)

24HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

CEGER for SW Verification

Modular verification by utilizing interface constraints is more scalable
Differences between HW and SW components

– Nature of composition
• HW: typically synchronous composition
• SW: typically asynchronous composition (wrt atomic blocks/functions)

– Effect of primary inputs
• HW changes state in every cycle in response to primary inputs.
• In SW, most state changes internal to a function do not depend on primary

inputs. The inputs typically affect only the starting state of a multi-step
(atomic) function.

– Type of interface constraints
• In HW, may need to capture sequences of constraints on interface signals
• In SW, typically Hoare-style pre-conditions/post-conditions suffice

– Number of primary inputs at component boundaries, relative to component size
• Much larger in HW, than number of input parameters of functions in SW

CEGER is likely better-suited for SW than for HW
(Automatic) Generation of SW component interfaces

– Learning methods, Interface automata, Refinement-based methods …

25HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Exploiting High-level Structure (Again)

Learning to Accelerate Verification
(by using high-level structure information)

Model

Property

Model
Checker

Environment

Yes
Witness

No
Counter-example

“Verification-friendly” Modeling
(property preserving)

26HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Model Simplification

HW model simplification results in significant
performance improvement in BMC

– Circuit graph hashing, BDD-sweeping, SAT
sweeping [Kuehlmann et al. 00, 01, 04]

Re-use: Simplify the CFG to improve BMC
Example CFG

– The only control states reachable at depth 3 are
S2, S7 (and sink)

– Pruning of search space is possible by
prohibiting all other control states at depth 3

– These constraints are propagated for further
reduction in size of BMC problem

Control State Reachability Analysis (CSR)
– Conservative reachability analysis on control

states only (without regard to guards)
– Provides useful constraints in BMC to help size

reduction and search space pruning

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

27HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Control State Reachability Analysis: Limitation

Reachable Control State Set
S0

S1

S2 S7

S3 S4 S9 S8

S4 S5 S6 S11 S10 S9

S2 S1 S7

S1 S2 S10 S11

S5 S6 S1 S10 S11

d=0

1

2

3

4

5

6

15

R(0) = {S0}, |R(0)| = 1

R(1) = {S1}, |R(1)| = 1

R(2) = {S2,S7}, |R(2)|=2

R(3) = {S3,S4,S8,S9}, |R(3)|=4

R(15) = {S1,…,S11}, |R(15)|=11

R(4) = {S4,S5,S6,S9,S10,S11}, |R(4)|=6

Problem: All control states may become reachable after some depth
– Example: No search space pruning in BMC after depth 15

Why does this Saturation happen?
– Mainly due to reconvergent paths in the CFG that have different lengths
– This is especially problematic in reconvergent paths inside loops

28HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Model Transformation: Path Balancing
[Ganai & Gupta 06]

Re-learn: Transform the CFG to
improve BMC performance

Path Balancing Strategy
– Balance reconvergent paths in

CFG by inserting NOP states
– This increases path lengths, but …
– Potentially provides benefits in

BMC

Example
– Add states S2a and S7a (NOP

states)
– Preserves typical properties of

interest (without “Next-time”)

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

S2a
S7a

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

S2a
S7a

29HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Control State Reachability on Path-Balanced CFG

S0

S1

S2 S7

S3 S2a S7a S8

S4 S9

S1

S5 S6 S10 S11

d=0

1

2

3

4

5

6

|R(0)| = 1

|R(1)| = 1

|R(2)| = 2

|R(3)| = 4

|R(4)| = 2

|R(5)| = 4

|R(6)| = 1

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

S2a
S7a

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

S2a
S7a

No Saturation in CSR !
Max |R(d)| = 4
Provides search space pruning and size reduction in BMC at all depths

30HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Results: Learning + Model Transformation

Industry software C-program: 17 KLOC
6 properties P1-P6, checked using SMT-based BMC
M → M’ : Model transformation (Path Balancing)

A: Without Learning
on M

B: With Learning
on M

C: With Learning
on Transformed M’

D sec Wit? D sec Wit? D sec Wit?

P1 9* TO No 38* TO No 41 <1 Yes

P2 9* TO No 41* TO No 44 <1 Yes

P3 9* TO No 43* TO No 92 156 Yes

P4 9* TO No 30 188 Yes 94 151 Yes

P5 9* TO No 21 6 Yes 60 4 Yes

P6 9* TO No 31 164 Yes 70 22 Yes

P

Notes: D: Analysis Depth (* denotes depth at timeout 1000s), Wit: Witness found? Yes / No

31HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Outline

Background
Model checking
Hardware verification
Software Verification

Re-use & Re-learn
Symbolic model checking
Exploiting high-level structure
Supplement (with a little help from cheaper friends)
Verify at intermediate functions
Model transformations

Practical Experience
Lessons Learned
Challenges

32HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

HW Verification in High Level Synthesis Framework

Behavior level
C

Cyber

RTL
Verilog

Behavior level
Property

Behavior level
Property

Transform
using HLS
information

RTL Property
(LTL)

RTL Property
(LTL)

DiVer Witness/
Counterexample

Translation
into Behavior level

Behavior level (source) debug
out reg _ck_start=0;
out reg _ck_done=0;
if(CT_01){

RG_01 = 1;
_ck_start = 1;

}
RG_02 = RG_03;
_ck_done = RG_03;

Waveform for Behavior level variables

Highlight buggy codeif(CT_01){

x
y
z

Behavior level
C

Cyber

RTL
Verilog

Behavior level
Property

Behavior level
Property

Transform
using HLS
information

RTL Property
(LTL)

RTL Property
(LTL)

DiVer Witness/
Counterexample

Translation
into Behavior level

Behavior level (source) debug
out reg _ck_start=0;
out reg _ck_done=0;
if(CT_01){

RG_01 = 1;
_ck_start = 1;

}
RG_02 = RG_03;
_ck_done = RG_03;

Waveform for Behavior level variables

Highlight buggy codeif(CT_01){

x
y
z

x
y
z

Cyber Work Bench (CWB)
– Developed by NEC Japan (Wakabayashi et al.)
– Automatically translates behavior-level design (C-based) to RTL design (Verilog)
– Generates property monitors for RTL design automatically

VeriSol is integrated within CWB
– Provides verification of RTL designs
– Has been used successfully to find bugs by in-house design groups

33HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

F-Soft Software Verification Platform

[Ivancic et al. 05]
Source code

(C, stubs)

Proof

Bug

Properties

Bug

Model Checker
(VeriSol)

Model Checker
(VeriSol)

Ctrex Analysis
& Refinement

Ctrex Analysis
& Refinement

AbstractionAbstraction

Model
Transformation,

Translation

Model
Transformation,

Translation

Static
Analysis
Static

Analysis

Testbench
Generator

Testbench
Generator

Automated
checkers

Program slicing

Range analysis

Constant Folding

Invariant Generation

Predicate Abstraction

34HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

VARVEL: Source code Verification Tool for C
Acknowledgement: Y. Hashimoto et al., NEC

Statically detects typical run-time error for C from source code
With bounded model checking, check variable values and paths accurately
Currently in practical in-house use for commercial product software

VARVELVARVELVARVEL
(Bounded)

Model Checking
(Bounded)

Model CheckingAssumption
Approximation
Assumption

Approximation

Control flow
graph

Control flow
graph

Counter
examples

Post processingPost processing

Logical equations
expressing finite state space

Program
Analysis

Program
Analysis

Static analysis techniques
similarly used in compilers

Exhaustive search

(Execution) path to
cause errors.

Typical run-time error detection
- Invalid pointer dereferencing
- Array bounds violation
- String operation errors
- Memory management errors

Listing results.
Showing trace for
each result working
with editor.

Source code
to be verified

Source code
to be verified

No test programs,
No test data

35HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

In-house Verification Service
Acknowledgement: Y. Hashimoto et al., NEC

NEC Japan has started in-house “Source code Verification Service”
– Service provided by SW developers, not verification experts

Verified source code of several commercial SW projects
– Total lines : about 1.8 MLOC (up to 600 KLOC in one project)
– Verified source code had been already tested

Detected 37 confirmed bugs (500+ potential bugs)
– Projects determined the service is effective.
– The verification service will be incorporated into software development

process in divisions of those projects.

36HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Lessons (Re-)Learned

Accuracy of program modeling AND efficiency of analysis are crucial
– Conflicting requirements in general (knob can be tuned for specific properties)
– Much harder to regain global accuracy from local reasoning (e.g. in predicate

abstraction refinement)
– Retain bit-level accuracy (in some model), spend effort on improving analysis

Advancements in constraint solvers (SAT, SMT) offer hope
– Sophisticated search heuristics and learning are useful for finding bugs
– More scalable than methods that save states

Exploit the structure in SW models (vs. flat HW-like models)
– Learn from models to solver, from solvers to model

Stage the analyses (cheaper methods first!)
– Difficult to handle MLOC, 1000s of properties: no silver bullet
– Stage the analyses to reduce model and # properties, and to improve precision
– Pay attention to proofs (if only to avoid wasting time to find bugs)

STAGED ANALYSES
Smaller models
Less # properties
More precise analysis

BMC
SAT/SMT proof-based

abstraction

UMC
BDDs/SAT

HW Verification
Static Program

Analysis reduction
(model, props)

SW Verification

37HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Challenges & Future Directions

Pointer alias analysis
– Scalable & accurate (context-sensitive, flow-sensitive) alias analysis is needed
– Otherwise, model is either too big or too inaccurate

Long loops / large arrays
– Most frequent reason for not finding deep bugs in sequential programs

Heap shapes and properties
– Active area of research, but methods do not scale beyond a few KLOC yet
– Can be leveraged to provide sound reductions for other properties

Modular verification and component interfaces
– Orthogonal to component-based methods, can provide scaling up to systems
– Practical difficulties can be addressed by systematic development practices,

but there should be a clear return on invested effort
Concurrent program verification

– Concurrency is pervasive, and very difficult to verify
– Blowup in interleaved executions (in addition to issues in sequential programs)
– Existing methods have limitations

• Static program analysis: too many false warnings
• Model checking: does not scale
• Testing: poor coverage

– Great opportunity to contribute, especially with the proliferation of multi-cores!

38HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn

Thank you!

20th International Conference on
Computer Aided Verification

CAV 2008
July 7 – 13, 2008
Princeton, USA

http://www.princeton.edu/cav2008

	From Hardware Verification to Software VerificationRe-use and Re-learn
	Outline
	Model Checking (MC)
	Symbolic Hardware Circuit Model
	Property Verification
	Bounded Model Checking (BMC)
	VeriSol Symbolic Model Checking Platform
	Industrial Case Study: Multiple Verification Engines
	Re-use Symbolic Model Checking Platform for SW
	Intermediate Representation
	Automatic Translation of CFG to Symbolic LTS
	Outline
	Symbolic Model Checking of Software Models
	Re-learn: Exploit Structure of SW models
	Results for PPP Case Study
	Re-learning Strategies
	Supplementing Model Checking: Motivation
	Static Invariant Generation
	Results on Industry Programs
	Verifying Programs from Intermediate Functions
	Conservative Environment Abstraction
	Example of Environment Model
	CEGER: CounterExample Guided Environment Refinement
	CEGER for SW Verification
	Exploiting High-level Structure (Again)
	Model Simplification
	Control State Reachability Analysis: Limitation
	Model Transformation: Path Balancing
	Control State Reachability on Path-Balanced CFG
	Results: Learning + Model Transformation
	Outline
	HW Verification in High Level Synthesis Framework
	F-Soft Software Verification Platform
	VARVEL: Source code Verification Tool for C
	In-house Verification Service
	Lessons (Re-)Learned
	Challenges & Future Directions
	

