From Hardware Verification to Software Verification
Re-use and Re-learn

Haifa Verification Conference
October 25, 2007

Aarti Gupta
agupta@nec-labs.com
NEC Laboratories America
Princeton, USA

Acknowledgements:
Pranav Ashar, Malay Ganai, Franjo Ivancic, Vineet Kahlon,
Sriram Sankaranarayanan, llya Shlyakhter, Chao Wang, Zijiang Yang

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn



U Background
— Model checking
— Hardware verification
— Software Verification

U Re-use & Re-learn
— Symbolic model checking
— Exploiting high-level structure
— Supplement (with a little help from cheaper friends)
— Verify at intermediate functions
— Model transformations

O Practical Experience

0 Lessons Learned

U0 Challenges

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 2



Model Checking (MC)

Property

Yes
Witness

Model
Checker

\4

Design
No

‘ Environment I/ Counter-example

O Model checker: Checks whether the design satisfies the property by exhaustive
state space traversal [Clarke et al. 82]

O Advantages
— Automatic verification method
— Provides error traces for debugging
— No test vectors required: all inputs are automatically considered
— Sound and complete (no false proofs, no false bugs)
O Practical Issues
— State space explosion (exponential in number of state elements)
— The system needs to be closed
i.e. we need to model the environment (constraints on design inputs, or models)

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 3



Symbolic Hardware Circuit Model

Primary _ Primary Gates = CNF
Inputs Next state logic Output logic Outputs

W ) 0 Z:.—C

(atc’ )(b+c’ )(a'+b’+c)

Present Next

State

State ai_

Do (@ +c)(b’ +c)(atb+c’)

r; Latches (Registers) (a+b’ )(@'+b)

|
|
I a —po—p
|
|

Design is modeled as a Labeled Transition System (LTS): (S, s0, TR, L)
Symbolic LTS Representation

— Set of States S is encoded by a vector of binary variables X (outputs of latches)

— Initial state s0 comprises initial values of the latches

— Transition relation TR is implemented as next state logic (Boolean gates)

* Can also be represented in Conjunctive Normal Form (CNF)

— Labeling L is implemented as output logic (Boolean gates)

O Note: Size of state space S =2 IXI

U0

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 4



Property Verification

0 Proof Approach: Model Checking

— Exhaustive state space exploration
— Maintains a representation of visited states (explicit, BDDs, circuit graphs)

— Very expensive for medium to large-size LTS
O Falsification Approach: Bounded Model Checking
— State space search for bugs (counter-examples) only
— Typically does not maintain representation of visited states
— Less expensive, but needs good search heuristics

Model Checking AGp
Does the set of states
reachable from sO
contain a bad state(s)?

Bounded Model Checking
Is there is a path from
the initial state sO

to the bad state(s)?

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn



Bounded Model Checking (BMC)

O Main idea: Unroll transition relation logic up to bounded length

e § ] g

initial
state ! next_state[n-1]=
Time Frame Expansion present_state[n]

J

0 BMC problem translated to a Boolean formula f [Biere et al. 00]
— A bug exists of length k & SAT(f,) (formula is satisfiable)
— Satisfiability of f, is checked by a standard SAT solver

O Falsification: Can check for bounded length bugs
— Scales much better than symbolic model checking with Binary Decision Diagrams (BDDs)

— BDDs: 100s of latches, SAT-based BMC: 10k of latches

0 Proofs by induction with increasing depth [Sheeran et al. 00]

— Works well with additional reachability invariants [Gupta et al. 03]
0 Proof-based abstraction for unbounded MC [McMillan & Amla 03, Gupta et al. 03]
U Interpolant-based model checking [McMillan 03, McMillan 06]

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 6



VeriSol Symbolic Model Checking Platform

HVC 2007

. Engines for finding Bugs

Prover
Proves correctness of
properties using
Unbounded Model
\Checking and Induction

BMC
Find bugs
efficiently

‘Efficient
Representation
(circuit simplifier)

[Ganai et al. 05]

BMC: Bounded Model Checking

UMC: Unbounded Model Checking
EMM: Efficient Memory Modeling

PBIA: Proof-Based Iterative Abstraction

4 )

Distributed BMC
Find bugs on network
of workstations

New: SNIT solvers; BDDs+0Omega

( BMC + EMM + PBIA )

Reduce model size by
identifying & removing
irrelevant memories

\ and logic )

Boolean Sb\lver
(SAT, BDDQ

BMC + PBIA
Reduce model size by
identifying & removing

( )
BMC + EMM

Find bugs in embedded

memory systems using

- NS -

irrelevant logic
- J

Efficient Memory Model

From Hardware Verification to Software Verification: Re-use and Re-learn



Industrial Case Study: Multiple Verification Engines

Interesting large problems are within reach!

13K FFs, 0.5M gates

1 safety property

[

Proved Correct
(30s)

(BMC or D-BMC)

\

Find Bugs

J

. 1

- _ ™
Identify & remove
irrelevant

logic

(BMC + PBIA)
G J

BMC
120 depth in 1643s
(memory out)

Distributed-BMC
323 depth in 8643s
With 5 PCs on LAN

. B

/

.

N
Prove property
correct
(UMC)

J

Abstract Model
71FFs, 1K gates
(6 iterations, 1200s)

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn



Re-use Symbolic Model Checking Platform for SW

C Program Symbolic LTS Model
1: void bar() { M=(S,s0,TR.L)
2: intx=3,y=x-3; W — : o
3:  while (x<=4){ Transition Relation
4: y++ Huge gap ! '
5: x = foo(x); X Y

. = D— =
6 } i ——— |
gy Lo P Laches__
9: Present State Next State
10: int foo (int 1) { Challenges
11: intt=1+2; Rich data types
12:  if (t>6) e Structures and arrays
13: t-=3: » Pointers and pointer arithmetic
14: else ’ « Dynamic memory allocation
15: £ o  Procedure boundaries and recursion

' o « Concurrent programs
16: return t;

17:}

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 9



Intermediate Representation

C Program Symbolic LTS Model
1: void bar() { M=(S,s0,TR.L)
2: intx=3,y=x-3; W — : o
3:  while (x<=4){ Transition Relation
4y CFG ) ﬂgk )
5: x = foo(x); ‘ Control Flow

) )— >,
6: } Graph | - | :
gy — Lo P laches__
9: Present State Next State
10: int foo (intl) {
11:  intt=1+2; 0 Control Flow Graph
12: if (t>6) — Language-independent intermediate
13: t-=3; representation
14- else — Provides the basis for several optimizations
15: t - (compilers, program analysis)
16: returnt; — Allows separation of model building phase from
17: } model checking phase

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 10



Automatic Translation of CFG to Symbolic LTS

l CFG ~ finite (control + data) state machine
[ s= X+12_; ] Basic blocks ~ control states (encoded using pc)
tiﬁ/ t=xt: \!(t‘> 6)  Values of program variables ~ data states
N Guarded transitions ~ transition relation for control states
[ t-=3; | [ t--; ] Parallel assignments ~ transition relation for data states

- 4=t Re-use: Bit-level accurate models for precision
\ : (e.g. 32-bit adders, shifters, etc.)

l

U What about the challenges?

HVC 2007

Rich data types, structures and arrays: Consider only finite integer types, and
convert/flatten other types
Pointers and pointer arithmetic: Convert to a pointer-less description

» Similar to work in high-level synthesis [Semeria & De Micheli 98]
Dynamic memory allocation: To obtain a finite state verification model, consider
bounded data only

Procedure boundaries and recursion: To obtain a finite state verification model,
consider bounded recursion only

» Alternative: Pushdown systems, Boolean programs [Ball & Rajamani 01]
Concurrent programs: Each thread is represented by a separate CFG, with
shared variables

From Hardware Verification to Software Verification: Re-use and Re-learn 11



v' Background
v" Model checking
v" Hardware verification
v’ Software Verification

0 Re-use & Re-learn
— Symbolic model checking
— Exploiting high-level structure
— Supplement (with a little help from cheaper friends)
— Verify at intermediate functions
— Model transformations

O Practical Experience

1 Lessons Learned

O Challenges

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 12



Symbolic Model Checking of Software Models

O Back-end verification is performed by the VeriSol platform

O Falsification: Bugs (reachability of error labels) can be found by using
SAT-based BMC on the software models [lvancic et al. 04]

— Unrolling of TR corresponds to a block-wise execution on the CFG
— SAT-based search relatively insensitive to number of variables
» Due to effective conflict-driven learning and related decision heuristics

— Difference from HW: Depth of unrolling required to reach bugs may be very
high (need to start from main()?)

O Verification: Proofs can be derived by using SAT-based or BDD-based
unbounded model checking on the software models

— Methods that save sets of reachable states tend to blow up

— Difference from HW: number of state variables in model is much larger
(number of int variables * 327?)

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 13



Re-learn: Exploit Structure of SW models

0 Use customized SAT heuristics for SW models [lvancic et al. 04]
— Observation: Only a single basic block is active in a sequential program
» Use a binary-encoded program counter variable (rules out other values)
— Observation: Program control location determines values on data

» Heuristic pc: Make decisions on “program counter” variables first (give
them a higher score than other program variables)

* Heuristic one-hot: Allow word-level decisions on the program counter, by
using a one-hot encoding (e.g. B5 = (pc == 000101))

— Observation: Each basic block has relatively few predecessors

* Heuristic pred: Add (redundant) predecessor constraints to prune search
— Observation: Each basic block has relatively few successors

* Heuristic succ: Add (redundant) successor constraints to prune search

U For BDD-based model checking, exploit the sequential nature to use a
disjunctively decomposed MC algorithm [Wang et al. 06]

— Faster and more memory-efficient than conjunctive BDD-based MC

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 14



Results for PPP Case Study

Time per depth for BMC for design H3

258
standard ——
score ———
one—hot —8—
trans —s—
caa

—_
o
=

&aEa

—

Se88

Time(s) per deT‘l‘i'me per depth

4888

s ne—

UnrollingAdepth

Learning in SAT

HVC 2007

2888

Uneo

2aaa8

loaa

Cumulative time cumuiztive Tinecsd

------ standard SAT heuristics
------ higher score for pc

------ one-hot encoding of pc
------ predecessor constraints

Cumulative time of BWMC for W3

standard —+—

Score ——
one—hot
trans

"

. @ 18 j=1c]
Unrolling Depth Unro"ing depth

From Hardware Verification to Software Verification: Re-use and Re-learn

15



Re-learning Strategies

O Issues so far
— Bit-accurate models from CFGs may be too large
» even after property-based program slicing
— Depth of unrolling required may be too high

O Strategies
v' Use customized heuristics for SAT or BDDs
v' Use light-weight analyses on CFGs to reduce model size

 Range analysis for bounding #bits per variable
— For example, for (1=0; 1<10; i1++) does notrequire 32 bits to represent i

« Constant folding
— Very effective for our memory modeling, which assigns locations to variables

v' Use predicate abstraction and refinement [Slam, Blast, CBMC/Satabs]
» Despite localization techniques, this frequently blows up [Jain et al. 05]
* Does not work well on programs with pointers

— Use cheaper static analysis methods to supplement model checking
« Static invariant generation

— Verify starting from intermediate functions, not entire program from main()
 More scalable

— Use transformations to generate “verification friendly” models
* Provides 1-2 orders of magnitude performance improvement

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 16



Supplementing Model Checking: Motivation

int A[N], B[NI: int A[N], B[N]:
int equals O { void arrayModel () {
int i=N, j=N : int i=N, j=N ; ..
int result=1 ; Wh!le (i >0){
while C# >0+ _ _ > I Invariants:
T 1= o 0<i<N
J--: Checkers it C1<0 || 1>=N) )
iIf C ALl '= BOJ1 )  inserted ERRORQ) ; .OS.jSN
result = 0 ; if C3<0 |1 §>=N) I==
1 ERRORQ) :
return result ;
ks +
+
0 Example

— No error possible because of invariants that hold true at if-statements
— Difficult to prove by model checking (large model for large N)
— Difficult to prove by predicate abstraction refinement
* Weakest pre-condition based refinement cannot discover the relationship i==j

O Such invariants can be easily (cheaply) discovered by static analysis
— e.g. by using Octagon abstract domain

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 17



Static Invariant Generation

0 Octagon abstract domain: £t x*y<c

— Due to Antoine Miné

— Successfully used in ASTREE static analyzer

— Captures commonly occurring variable relationships

e Array bound accesses

— For n variables, uses O(n3) time and O(n?) space to find invariants
L More expressive abstract domains can be used

— Linear invariants: more expensive

O Applications in SW verification
— Invariants can prove correctness of many properties [Sankaranarayanan et al. 06]
» Array buffer overflows, null pointer dereferences, ...
* Acts as afilter: reduction in # properties passed to the model checker

— Invariants can aid predicate abstraction refinement [Jain et al. 06]
* Improve performance by reducing number of refinements
— Invariants can aid bounded model checking [Ganai et al. 06]

* Improve performance by pruning SAT search space

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 18



Results on Industry Programs

0 Octagon invariants
— Can find many proofs of correctness before invoking the model checker
— Provide overall performance improvement

Without Octagon Invariants With Octagon Invariants
KLOC | #Buffer |#P #P #B |#Inc. | Time |[#P #P |#B #Inc. | Time
overflow | py by by (sec) | by SA | by |by (sec)
checks | gpo |SAT | SAT w/ SAT | SAT
Invar

f1 0.5 64 32 9 0 23 596 64 0 0 0 15
f2 | 1.1 16 8 6 0 2 564 16 0 0 0 66
f3 [ 1.1 18 8 5 2 3 572 16 0 2 0 104
fa | 1.2 22 10 6 3 3 478 18 1 3 0 195
f5 | 1.2 10 0 4 6 584 6 0 4 0 401
f6 | 1.6 26 6 8 4 579 18 0 8 0 197
f7 1 1.8 28 8 4 4 589 12 4 4 0 325
f8 | 3.6 280 267 |13 0 0 144 280 0 0 0 140

Note: P by SA = Proofs by Static Analysis, P by SAT = Proofs by SAT, B by SAT = Bugs by SAT, Inc. = Inconclusive

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 19



Verifying Programs from Intermediate Functions

O Ideally, deep bugs starting from the main function can be found by MC

4  Function Calls

Error block

«———

U In practice

— Model checker runs out of time/memory
— Missing function calls, global initialization
— main function contains parsers (deep recursion)

0 Bugs can be found at a smaller depth starting from an intermediate
function foo(..)

— Re-use: Similar to Localization Reduction [Kurshan 94]
— Issue: How to supply the context, i.e. the environment for the entry function?

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 20



Conservative Environment Abstraction

a

HVC 2007

False bug

Start from an intermediate function, with a conservative environment model
— For example, input parameters can take any values
— For example, pointer parameters/globals can be aliased or non-aliased
— For example, input parameters are independent (no relationship), etc.
Many reported bugs will likely be false bugs, due to missing context
Reuse: Use these counterexamples to refine the environment iteratively
CEGER: CounterExample Guided Environment Refinement
— Specialized CEGAR: CounterExample Guided Abstraction Refinement [Clarke et al. 00]

From Hardware Verification to Software Verification: Re-use and Re-learn 21



Example of Environment Model

O Verification with main( ) as entry

inF * X5 ) — No bugs reported for array buffer overflow or null
void main (int n) pointer dereference at error check
{ St - O Verification with init_array(..) as entry
’ — (Bogus) Bug reported
if (n<0]] n>1024 ) — Missing context: Relationship between x and y
rﬂ:“r?; i 2e(inD)*n) Q A possible solution: Use the following stub
X = malloc(size(int)*n);
::élz?‘r;)e/ziig) void Init _arrays env ( int * y)
. ’ {
env_assume(X);
} env_assume(y);
I } - int k = env_get_array_ bound(x);
\£0|d Init_array (int *y) env_assume( y > X & y <= X + kK );
int *j; ¥
for ( j=x; j<y; ++j)
{ L Model checker can automatically reason with an
*J = 0; //error check - : : ;
3 =" (iteratively refined) stub for each entry function
return: Q Similar technique is successful in finding the well-
known array overflow bug in bc-1.06 (gnu
+ y

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 22



CEGER: CounterExample Guided Environment Refinement

0 Not completely automated: User in the loop
— To determine whether a reported bug is false
— To provide the environment refinement

O However, automated help is available from the model checker
— Counterexample trace (exhaustive/bounded search is the hard part)
» Users can examine the interface variables of interest and generalize relationships
— Projection of counterexample trace on the interface (weakest preconditions, interpolants)
» Users find it easier to modify a suggested constraint, than to come up with one

O The overall flow is consistent with a check-debug-refine cycle

—
all headers, user-specified, or
makefiles __automatically generated functions, input assumptions,

%\pre- and post-conditions, etc.

program spec environmen Check-debug-refine cycle
models

Y Y Y proof (correct)

stubs: for missing code, library

v

v

SW Model Checker bug (with trace) ) %

(completely automated) Unknown

(error, timeout ...)

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 23



CEGER for SW Verification

0 Modular verification by utilizing interface constraints is more scalable

0 Differences between HW and SW components
— Nature of composition
 HW: typically synchronous composition
« SW: typically asynchronous composition (wrt atomic blocks/functions)
— Effect of primary inputs
« HW changes state in every cycle in response to primary inputs.

* In SW, most state changes internal to a function do not depend on primary
inputs. The inputs typically affect only the starting state of a multi-step
(atomic) function.

— Type of interface constraints
* In HW, may need to capture sequences of constraints on interface signals
* In SW, typically Hoare-style pre-conditions/post-conditions suffice

— Number of primary inputs at component boundaries, relative to component size
 Much larger in HW, than number of input parameters of functions in SW

0 CEGER is likely better-suited for SW than for HW

0 (Automatic) Generation of SW component interfaces
— Learning methods, Interface automata, Refinement-based methods ...

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 24



Exploiting High-level Structure (Again)

Learning to Accelerate Verification
(by using high-level structure information)

‘ Property I

\/

Model
Checker

/\ ‘ Environment I/

“Verification-friendly” Modeling
(property preserving)

Yes
Witness

Model

v

No
Counter-example

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 25



Model Simplification

0 HW model simplification results in significant
performance improvement in BMC
— Circuit graph hashing, BDD-sweeping, SAT
sweeping [Kuehlmann et al. 00, 01, 04]

A
14

d Re-use: Simplify the CFG to improve BMC
0 Example CFG

— The only control states reachable at depth 3 are
S2, S7 (and sink)

— Pruning of search space is possible by
prohibiting all other control states at depth 3

— These constraints are propagated for further
reduction in size of BMC problem

O Control State Reachability Analysis (CSR)

— Conservative reachability analysis on control
states only (without regard to guards)

— Provides useful constraints in BMC to help size
reduction and search space pruning

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 26



Control State Reachability Analysis: Limitation

Reachable Control State Set
R(0) = {S0}, |R(0)] =1

R(1) = {81}, |R(1)| =1

R(2) = {S2,S7}, IR(2)|=2

R(3) = {S3,54,58,59}, |R(3)|=4

R(4) = {S4,55,56,59,510,S11}, |R(4)|=6

R(15) = {S1,...,S11}, [R(15)|=11

O Problem: All control states may become reachable after some depth
— Example: No search space pruning in BMC after depth 15

O Why does this Saturation happen?
— Mainly due to reconvergent paths in the CFG that have different lengths
— This is especially problematic in reconvergent paths inside loops

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 27



Model Transformation: Path Balancing

[Ganai & Gupta 06]

O Re-learn: Transform the CFG to
improve BMC performance

O Path Balancing Strategy

— Balance reconvergent paths in
CFG by inserting NOP states

— This increases path lengths, but ...

— Potentially provides benefits in
BMC

O Example

— Add states S2a and S7a (NOP
states)

— Preserves typical properties of
interest (without “Next-time”)

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 28



Control State Reachability on Path-Balanced CFG

IR(0)] =1

IR(1)| =1

IR(2)| = 2

IRG3)I =4

IR(4)] =2

IR(5)| =4

IR(6)] =1

No Saturation in CSR ! 000
Max |R(d)| = 4
Provides search space pruning and size reduction in BMC at all depths

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 29



Results: Learning + Model Transformation

0 Industry software C-program: 17 KLOC
O 6 properties P1-P6, checked using SMT-based BMC
0 M - M’ : Model transformation (Path Balancing)

A: Without Learning B: With Learning C: With Learning
P on M on M on Transformed M’

D sec Wit? D sec Wit? D sec Wit?
P1 9* TO No 38* TO No 41 <1 Yes
P2 9* TO No 41* TO No 44 <1 Yes
P3 9* TO No 43* TO No 92 156 Yes
P4 9* TO No 30 188 Yes 94 151 Yes
P5 9* TO No 21 6 Yes 60 4 Yes
P6 9* TO No 31 164 Yes 70 22 Yes

Notes: D: Analysis Depth (* denotes depth at timeout 1000s), Wit: Witness found? Yes / No

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 30



v' Background
v" Model checking
v' Hardware verification
v Software Verification

v Re-use & Re-learn
v" Symbolic model checking
v Exploiting high-level structure
v' Supplement (with a little help from cheaper friends)
v Verify at intermediate functions
v" Model transformations

O Practical Experience

0 Lessons Learned

U0 Challenges




HW Verification in High Level Synthesis Framework

-

Behavior leve Behavior level (source) debug
Behavior level —
Property |
FiCT 011 Highlight buggy code
RG_01= 1
_ck_start=1;
i
RG02=RG.03 | x _[ L[ LI LI
Tra'nSfonn _ck_(c)l(2>ne=R8:j03 ; _,_\—,—
Cyber using HLS 7 — T 1
information
l Waveform for Behavior level variables
......................................... RTL Property Translation

(LTL)

into Behavior level

Witness/
Counterexample

DiVer

Q Cyber Work Bench (CWB)
— Developed by NEC Japan (Wakabayashi et al.)
— Automatically translates behavior-level design (C-based) to RTL design (Verilog)
— Generates property monitors for RTL design automatically
O VeriSol is integrated within CWB
- Provides verification of RTL designs
— Has been used successfully to find bugs by in-house design groups

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 32



F-Soft Software Verification Platform

— [lvancic et al. 05]
Properties Source code H

(C, stubs)

Program slicing

Automated Static = vei
checkers Analysis ange analysis

Constant Folding

f Bug Abstraction
Testbench Invariant Generation
Generator l
T Model Predicate Abstraction
Ct A nhes Transformation,
e s nalysis Translation
& Refinement

x l \/ Proof

Model Checker >
(VeriSol)

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 33



VARVEL.: Source code Verification Tool for C

Acknowledgement: Y. Hashimoto et al., NEC

M Statically detects typical run-time error for C from source code
B With bounded model checking, check variable values and paths accurately

B Currently in practical in-house use for commercial product software

Listing results.

No test data : . . — '
Typical run-time error detection Showing trace fO_r
each result working

- Invalid pointer dereferencing el :

- Array bounds violation e !'5!-;...vW'th £l
Source code - String operation errors ;
to be verified - Memory management errors

No test programs,

" VARVEL =

Assumption ontrol flo Model Checking
Approximation graph N
ontrol flo Program
Conaton—>

Analysis

: : : Liogica ations
Static analysis techniques e&QresM g fini Dﬁ

similarly used in compilers

/Exhaustive

(Execution) path to
cause errors.

34

From Hardware Verification to Software Verification: Re-use and Re-learn

HVC 2007



In-house Verification Service

Acknowledgement: Y. Hashimoto et al., NEC

O NEC Japan has started in-house “Source code Verification Service”

— Service provided by SW developers, not verification experts

0 Verified source code of several commercial SW projects

HVC 2007

— Total lines : about 1.8 MLOC (up to 600 KLOC in one project)
— Verified source code had been already tested

Detected 37 confirmed bugs (500+ potential bugs)
— Projects determined the service is effective.

— The verification service will be incorporated into software development
process in divisions of those projects.

From Hardware Verification to Software Verification: Re-use and Re-learn 35



Lessons (Re-)Learned

O Accuracy of program modeling AND efficiency of analysis are crucial
— Conflicting requirements in general (knob can be tuned for specific properties)

— Much harder to regain global accuracy from local reasoning (e.g. in predicate
abstraction refinement)

— Retain bit-level accuracy (in some model), spend effort on improving analysis
O Advancements in constraint solvers (SAT, SMT) offer hope
— Sophisticated search heuristics and learning are useful for finding bugs
— More scalable than methods that save states
O Exploit the structure in SW models (vs. flat HW-like models)
— Learn from models to solver, from solvers to model
O Stage the analyses (cheaper methods first!)
— Difficult to handle MLOC, 1000s of properties: no silver bullet
— Stage the analyses to reduce model and # properties, and to improve precision
— Pay attention to proofs (if only to avoid wasting time to find bugs)

SW Verification HW Verification STAGED ANALYSES
Static Program i ” BMC ” UMC
Analvsis reduction SAT/SMT proof-based BDDs/SAT Smaller models
y (model, props) abstraction Less # properties

More precise analysis

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 36



Challenges & Future Directions

O Pointer alias analysis
— Scalable & accurate (context-sensitive, flow-sensitive) alias analysis is needed
— Otherwise, model is either too big or too inaccurate
U0 Long loops / large arrays
— Most frequent reason for not finding deep bugs in sequential programs
0 Heap shapes and properties
— Active area of research, but methods do not scale beyond a few KLOC yet
— Can be leveraged to provide sound reductions for other properties
O Modular verification and component interfaces
— Orthogonal to component-based methods, can provide scaling up to systems

— Practical difficulties can be addressed by systematic development practices,
but there should be a clear return on invested effort

O Concurrent program verification
— Concurrency is pervasive, and very difficult to verify
— Blowup in interleaved executions (in addition to issues in sequential programs)
— Existing methods have limitations
« Static program analysis: too many false warnings
 Model checking: does not scale
» Testing: poor coverage
— Great opportunity to contribute, especially with the proliferation of multi-cores!

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 37



Thank you!

HVC 2007

20th International Conference on
Computer Aided Verification
CAV 2008
July 7 - 13, 2008
Princeton, USA

http://lwww.princeton.edu/cav2008

From Hardware Verification to Software Verification: Re-use and Re-learn

38



	From Hardware Verification to Software VerificationRe-use and Re-learn
	Outline
	Model Checking (MC)
	Symbolic Hardware Circuit Model
	Property Verification
	Bounded Model Checking (BMC)
	VeriSol Symbolic Model Checking Platform
	Industrial Case Study: Multiple Verification Engines
	Re-use Symbolic Model Checking Platform for SW
	Intermediate Representation
	Automatic Translation of CFG to Symbolic LTS
	Outline
	Symbolic Model Checking of Software Models
	Re-learn: Exploit Structure of SW models
	Results for PPP Case Study
	Re-learning Strategies
	Supplementing Model Checking: Motivation
	Static Invariant Generation
	Results on Industry Programs
	Verifying Programs from Intermediate Functions
	Conservative Environment Abstraction
	Example of Environment Model
	CEGER: CounterExample Guided Environment Refinement
	CEGER for SW Verification
	Exploiting High-level Structure (Again)
	Model Simplification
	Control State Reachability Analysis: Limitation
	Model Transformation: Path Balancing
	Control State Reachability on Path-Balanced CFG
	Results: Learning + Model Transformation
	Outline
	HW Verification in High Level Synthesis Framework
	F-Soft Software Verification Platform
	VARVEL: Source code Verification Tool for C
	In-house Verification Service
	Lessons (Re-)Learned
	Challenges & Future Directions
	

