Practical Methods in Coverage-Oriented Verification of the Merom Microprocessor

Alon Gluska

- Merom microprocessor and its verification
- Coverage-Driven Verification (CDV) and its drawbacks
- Merom Coverage-Oriented Verification
 - Practical methods in Merom coverage
- Results and summary

- Merom microprocessor and its verification
- Coverage-Driven Verification (CDV) and its drawbacks
 - Merom Coverage-Oriented Verification
 - Practical methods in Merom coverage
 - Results and summary

Merom Microprocessor

- Intel's CoreTM Duo 2 Mircroarchitecture
 - New foundation for desktop, mobile and server multi-core processors
 - Designed by Mobile Microprocessor team in Haifa, Israel
- Energy-efficient performance
 - 64-bit architecture, wider pipeline, instruction fusion, improved vector parallelization, incremental CPU power states
- Significantly higher performance and lower power than competition
- Dual and Quad core, with shared second-level caches
 - Design and shipment ahead of schedule

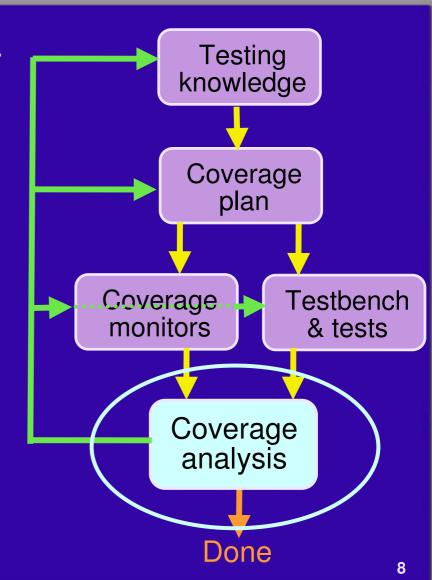
Merom Verification at a Glance

- Modular verification
 - Design & verification divided into 6 clusters
 - Most verification, and most coverage, at the cluster level
 - Cluster level testbenches
 - Scalable checking, monitoring, functional coverage
 - Verification at Full-Chip level
 - Architectural compliance and coverage
 - Compensate for cluster interface weaknesses
 - Verification at platform level
 - Co-simulation with chipset
 - Formal verification
 - Applied selectively according to complexity and capacity
 - Reduced the need for coverage-based quality indicators

- Merom microprocessor and its verification
 - Coverage-Driven Verification (CDV) and its drawbacks
 - Merom Coverage-Oriented Verification
 - Practical methods in Merom coverage
 - Results and summary

Functional coverage

- Widely known as a means of measuring the quality of verification
- Derived manually from logic specifications
- Systematically create a comprehensive list of conditions
 - Verify each is hit during simulation
 - Steer test generation towards holes
 - Quantitative way of measuring the progress of verification
 - A means for quality, not a goal
 - Bugs may exist outside the coverage space


Coverage-Driven Verification (CDV)

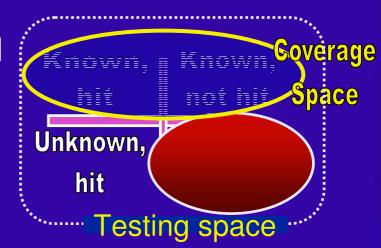
Coverage is the primary driver of verification

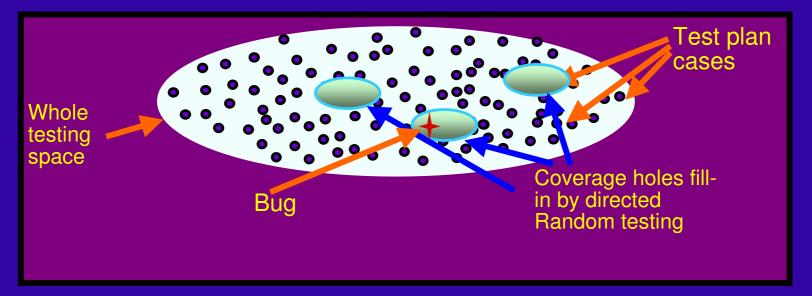
- Adopted from day one
- Main metric for completion

Drawbacks in early adoption

- Focus should be on finding bugs
- Lack of detailed knowledge
- Instability of design and uArch spec
- Incompleteness of coverage space

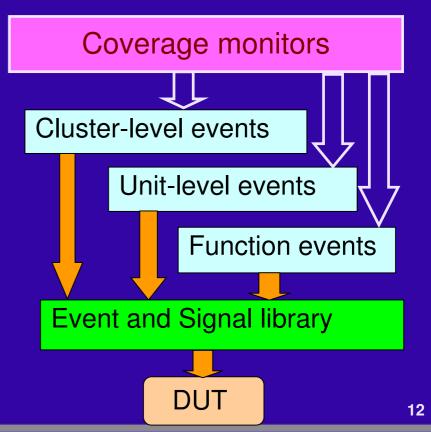
- Merom microprocessor and its verification
- Coverage-Driven Verification (CDV) and its drawbacks
 - Merom Coverage-Oriented Verification
 - Practical methods in Merom coverage
 - Results and summary


Merom Coverage-Oriented Verification


- Practical trade-offs for highest return on investment
 - Reduced scope and target high risk areas
 - Delayed applying coverage to the latter stage
 - Stage I: basic cleanup, kept full-chip model functional
 - Stage II: development and analysis of functional coverage
 - Overcomes major drawbacks of CDV
 - Basic bugs have already been flushed out
 - Design and uArch specs have stabilized
 - Engineers have acquired fundamental knowledge

Coverage Guidelines (1)

- Invest in random capabilities to fill in testing space
 - Random testing enables hitting Unknown cases



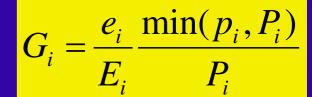
Coverage Guidelines (2)

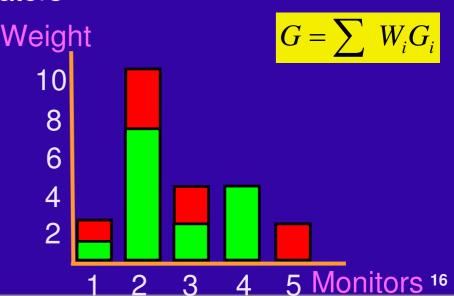
- Write coverage-friendly test plans
 - Easy and accurate translation into coverage monitors
 - Formal definition of coverage cases
- Develop coverage hierarchically
 - Higher abstraction of coverage monitors
 - Facilitates maintenance and reuse of lower level events

- Merom microprocessor and its verification
- Coverage-Driven Verification (CDV) and its drawbacks
 - Merom Coverage-Oriented Verification
 - Practical methods in Merom coverage
 - Results and summary

Merom Coverage Methods (1)

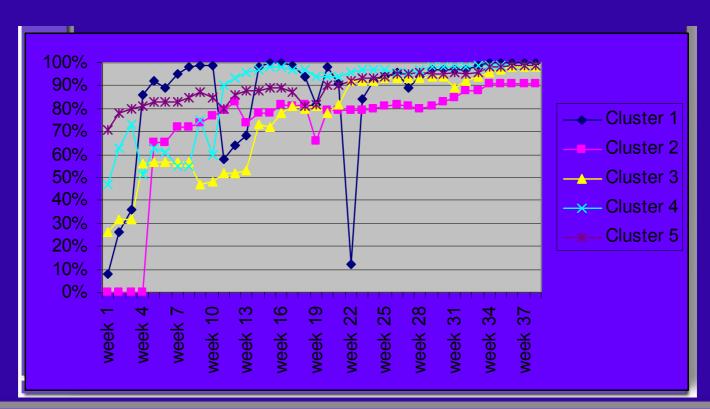
- Reduced coverage space based on prioritization
 - Complexity and risk
 - ▼ Controllability: reach-ability from testbench boundaries
 - ✓ Intensity of testing
 - ✓ Use of other techniques
 - Implemented only high-priority coverage
 - Major reduction in coverage space, low impact on quality
 - ~60% of test plan dropped from coverage space


Merom Coverage Methods (2)


- Frequency coverage of Basic Events
 - Statistical approach to maintain balance between events
 - Simple, tool supported approach
 - Automatic toggle coverage for Functional Boundaries
 - Simple, automatically generated for interface signals
 - Coverage for for Clock Gating logic
 - Simple monitors, automatically generated from HDL
 - Reduced space by merge of similar events
 - Merged coverage from identical components (e.g. decoders)

Merom Coverage Methods (3)

- On-going use of fresh coverage data
 - Sliding Window merge coverage from last 4 weeks
 - Eliminated use of stale data or need for resets
- Targets and weights defined per monitor
 - Used for hierarchical indicators
 - Visually reflected priority of coverage holes


- Merom microprocessor and its verification
- Coverage-Driven Verification (CDV) and its drawbacks
 - Merom Coverage-Oriented Verification
 - Practical methods in Merom coverage
 - Results and summary

Coverage Tracking

Coverage indicators climbed quickly

Coverage drops when major changes are made to monitors

Results

- Bugs found by coverage activities
 - ~80 bugs, ~8% of bugs in relevant period
 - 42 directly, not uniformly distributed
 - At least similar number found indirectly
 - Improved knowledge, fixed flaws in tests and testbenches
 - Most bugs involved temporal behavior or multi-cluster
 - >100 bugs in verification infrastructure
- Coverage perceived very important by engineers
 - Enforced learning of low-level details
 - Contributed to quality of testing

Summary

- Applied Coverage Oriented Verification
 - Practical trade-offs, used in the latter stage of the project
- Improved random testing to fill-in coverage holes
- Multiple techniques to improve effectiveness
 - Prioritized coverage
 - Automatic monitors for logic boundaries
 - Automatic merge of similar events
 - Grading and visualization of holes
- Bugs detected by coverage activities
 - ~8% of RTL bugs, significant testbench enhancements
- Coverage contributed to very successful verification
 - Relatively few escapes found in silicon
 - Enabled pull-in of tape-out and production

