
Assisting the Code Review Process Using Simple

Pattern Recognition

Eitan Farchi

I.B.M. Research Laboratory, Haifa, Israel

Bradley R. Harrington

I.B.M. Systems and Technology Group, Austin, U.S.A

October 21, 2005

Abstract

We present a portable bug pattern customization tool de�ned on top

of the Perl regular expression support and describe its usage. The tool

serves a di�erent purpose than static analysis, as it is easily applicable

and customizable to individual programming environments. The tool has

a syntactic sugar meta-language that enables easy implementation of au-

tomatic detection of bug patterns. We describe how we used the tool to

assist the code review process.

1 Introduction

Formal reviews in general and speci�cally formal code reviews are one of the
most e�ective validation techniques currently known in the industry. Code
reviews are known to �nd a defect every 0.2 hours and a major defect every 2
hours [3]. The down sides of formal reviews, especially formal code reviews, are
that they are skill sensitive and often tedious.

Bug patterns and programming pitfalls are well known and e�ective pro-
gramming tools that aid development, review, testing and debugging [5][1]. Bug
patterns and pitfalls typically aid the review process through code review check-
lists or question catalogs (see appendix �ve in [4] for an example). As pointed
out in [4], code review question catalogs must be kept small to be e�ective. As
a result, a customization process is required - projects should create their own
customized question catalog.

The developers of compilers and static analysis tools have attempted to
address the skill sensitiveness, tediousness and need for customization of code
reviews. Traditionally compilers could be directed to look for programming

1

pitfalls. Notable examples of static analysis tools are lint 1, Beam2, FindBugs3

and the Rational code review feature. The user scenario in e�ect when applying
these tools is to go over a list of warnings given by the tool and determine if a
warning is actually a problem. The diÆculty with this approach is false alarms,
i.e., warnings which are not actually problems.

While all of the above tools provide customization options, these options are
limited, as they only have a �xed list of pitfalls to choose from. Notably, Jtest4

takes this a step further. Jtest for Java and for C has a GUI based language for
specifying pitfalls.

Another diÆculty with the static analysis approach is portability - static
analysis tools require parsing of the programming language and additional in-
formation, such as symbolic tables, to perform their task. Such information is
language speci�c. Today's organizations might work with a multitude of pro-
gramming languages (we have seen instances of up to �ve di�erent programming
languages having di�erent abstraction levels from assembly to C++ in the same
organization). In addition, o� the shelf tools will not always work as is, in spe-
ci�c environments and additional work will be required (up to 1 PY in one
instance in our experience) to adapt an o� the shelf tool that requires parsing
of a language to a complex industrial development and testing environment.

When designing the language, we had several requirements in mind. It was
important to use an easy to learn, easy to implement grammar, using o� the
shelf tools. Additionally, we felt that a declarative language will be better than
an imperative language. The ready availability of a well known, portable, pat-
tern recognition language for use as a building block was the most attractive
option. The Perl language regular expression support perfectly �ts this require-
ment. However, our example set, based on known review checklists [1] showed
that the Perl regular expression support will not be suÆcient to declaratively
specify many bug patterns (see section 2.2 for some examples). Consequently,
we identi�ed that the following is required

� Ability to �nd other patterns which follow or precede an identi�ed pattern

� A hierarchical construct, enabling the developer to verify if a pattern does
not match a line prior to checking the following line

� Identify repeated equal occurrences of a given pattern within an identi�ed
pattern

These requirements lead to the de�nition of a minimal syntactic sugar ex-
tension built on top of the Perl regular expression facility that enables the
declarative de�nitions of patterns conforming to the above requirements.

1See also http : ==www:pdc:kth:se=training=Tutor=Basics=lint=indexframe:html.
2See http : ==www�cad:eecs:berkeley:edu=cad�seminar=spring02=abstract=krohm:htm
3See findbugs:sourceforge:net
4See www:parasoft:com

2

The portable bug pattern customization tool serves a di�erent purpose than
static analysis, as it is easily applicable and customizable to individual program-
ming environments. A given project has certain programming pitfalls that may
not be applicable to other environments and may use a range of programming
languages. Also, even though there is some overlap with static analysis, the
tool catches di�erent types of bugs by using speci�c project related informa-
tion. Thus, the tool is meant to be used in concert with static analysis.

This work addresses the customization and portability requirements. We
have prototyped a portable bug pattern customization tool to assist the Rephrase
review process5. Bug patterns are de�ned using a simple pattern recognition
language, building on top of Perl regular expressions. Thus, the solution is
portable and can be applied to any programming language or for that matter
even to design documents. Once the tool is applied to a project, code lines
are annotated with review questions. Next, during the review meeting, the
annotated code is visible to all code reviewers, as the readers rephrase the code.

Whereas regular expression based tools have certain advantages, we recog-
nize static analysis based tools (e.g., Jtest and Beam) may �nd problems regular
expression based tools cannot. Speci�cally, static analysis tools operate on data

ow (e.g., de�ne-use graph) graphs and the control
ow graph of the program.
This type of information is not available when applying our regular expression
based approach thus limiting its e�ectiveness. For example, data
ow analysis
enables aliasing analysis. As a result, two pointers that point to the same mem-
ory location can be identi�ed and functions that have hazardous side e�ects can
be identi�ed. Another example is identifying variables that are initialized along
some paths and are not initialized along some other paths in the program. This
analysis requires both data
ow and control
ow information and is diÆcult to
achieve using the regular expression approach.

The bug pattern customization tool is intended to be used as a supplement
to existing source code review tools. The tool allows for the automatic detection
of possible bug patterns during reviews.

This paper is organized as follows. First, we describe our simple pattern
recognition review assisting tool. Next, typical bug pattern identi�cation using
the tool is discussed. We then describe how the tool is used to assist the review
process. Finally, experience of applying the tool to real life software projects is
presented.

5See www2:umassd:edu=SWPI=NASA=figuide:html for details on the Rephrase review

technique

3

2 A Simple Pattern Recognition Review Assist-

ing Tool

In this section, an overview of our simple pattern recognition review tool is given.
The user de�nes a set of patterns, (further explained in 2.1 and formally de�ned
in A), applicable to the project at hand. The project code is then searched for
any occurrence of the patterns de�ned by the user. When a pattern is found,
a review question is inserted above the pattern instance. Thus, creating a new
version of the code, annotated with review questions. The annotated code is
then reviewed, instead of the original code.

2.1 De�ning a pattern

A bug pattern (see appendix A for a formal de�nition), or simply a pattern,
is de�ned on top of the Perl regular expression facility [6]. Bug patterns are
written by the project developers identifying possible problematic parts of the
code under review. A pattern is implemented by using a set of Perl regular
expressions. Using the syntactic sugar pattern language we have de�ned, it is
feasible to check for a certain sequence of Perl regular expression matches and
non-matches. We have found this syntactic sugar pattern language helpful in
facilitating the de�nition of project speci�c bug patterns lists.

The bug pattern de�nition associates review questions with a bug pattern.
Thus, a bug pattern de�nition includes the following elements.

� A de�nition of an interesting pattern to review

� A review question to be associated with each pattern instance found during
the search (short question)

� A more detailed review question that is associated with each searched �le
for which at least one instance of the bug pattern was found

An example of a pattern de�nition follows. The pattern de�nition attempts
to �nd a line that is not a trace line (a trace line logs information on the program
to enable �led analysis), is probably a for loop line and has an assignment in
its condition. Note that we are not too concerned if we will \�nd" instances
that are not assignment in loop conditions as this will be easily ignored by the
reviewers during the review process. Also note that in de�ning the pattern
below we use project speci�c information - namely that traces are done using
the DEBUG TRACE PRINTF macro. The example is annotated to make it
self explanatory.

pattern

#The line is not a print statement

4

nmatch

DEBUG_TRACE_PRINTF

next {

#The line contains an assignment within two semi column.

#It is probably something like for(i = 0; i = 3; i++)

match

;.*=.*;

this {

#The part that was previously matched, e.g., ;i = 3; , is matched.

.*\s+=\s+.* below means possibly an identifier (.*) followed by some

#spaces (\s+), an assignment (=), some additional spaces (\s+) and

#then another possible identifier (.*) which if matched looks like it is an

#assignment

match

.*\s+=\s+.*

}

}

short question: ASSIGNMENT IN CONDITION?

long question: Double check conditions to determine if = is used instead of ==

\pattern

We found writing bug patterns using this syntactic sugar pattern de�nition
language easy. Within IBM it was quickly adopted by programmers from di�er-
ent organizations, with di�erent skills and backgrounds and required a negligible
learning curve. Three developers constructed a useful catalog of approximately
50 bug patterns within approximately 20 person hours.

2.2 Using the Tool to Search for Bug Patterns and Focus
the Review

In preparation for the review meeting, the tool is applied to the project under
review. Bug patterns can be grouped based on concerns. For a speci�c concern,
(e.g., concurrency,) the tool identi�es a subset of the project under review,
(typically a set of �les,) in which the occurrence of bug patterns related to
the concern were found. The review can be further focused by brie�ng the
reviewers to focus on the speci�c concern when reviewing the identi�ed subset
of the project.

2.3 The Annotated Code Used in The Review

After application of the tool, a new version of the code under review is produced
with review questions to assist the review process. To illustrate, the pattern
from the previous subsection will annotate the following code segment:

5

for(i = 2; i = j); i++)

for(i == 2; i = j); i++)

for(i = 2; i== j); i++)

for(i == 2; i== j); i++)

as follows:

/*REVIEW QUESTION(0) - ASSIGNMENT IN CONDITION? */

for(i = 2; i = j); i++)

/*REVIEW QUESTION(0) - ASSIGNMENT IN CONDITION? */

for(i == 2; i = j); i++)

for(i = 2; i== j); i++)

for(i == 2; i== j); i++)

Thus, warning of a possible assignment in a condition, in the proceeding code
segment. Note that for(i = 2; i == j); i+ +) and for(i == 2; i == j); i++)
are not
agged as they do not contain an assignment in the for condition.

3 Identi�cation of Typical Bug Patterns

In this section we explain how to use the bug pattern customization tool to
identify typical bug patterns. A detailed description of the bug pattern de�ni-
tion meta-language is formally de�ned in appendix A, brie
y described in the
previous section, and expanded upon here.

The meta-language consists of ten keywords built on top of Perl regular
expressions. Perl regular expressions were chosen for their well known ability to
allow for easy pattern matching, and grouping.

The meta-language is also source code independent, and could possibly be
used to detect patterns in non-source code �les such as design documentation.
Using this language, we have been able to successfully detect bug patterns in
the C, C++, Java and FORTH programming languages. A simple explanation
of the ten keywords is as follows:

pattern, npattern indicates the beginning and end of a bug pattern.

fg indicates a block of pattern detection code.

$dollarX where X is a number starting at 1, corresponds to the $<digits>Perl
keywords.

this corresponds to the $MATCH and $& Perl keywords.

before corresponds to the $PREMATCH and $` Perl keywords.

6

after corresponds to the $POSTMATCH and $' Perl keywords.

match indicates the following line is a regular expression to be matched.

nmatch indicates the following line is a regular expression to be inversely (not)
matched.

window(X) indicates the following pattern should check for a match on the
next X source lines of code.

code indicates a free form block of Perl source code to be evaluated as a Boolean
expression.

The following illustrates a few simple examples on how the language is used.

In a simple example, a project under review had a history of bugs in which
the programmer unnecessarily uses
oating point variables. The following pat-
tern prints a simple statement above the variable declaration during the code
review.

pattern

match

float

short question: Does the program unnecessarily use float or double?

long question:

\pattern

An original source code �le being reviewed with this line:

float foobar;

will display this during the code review:

/* REVIEW QUESTION(0) Does the program unnecessarily use float or double ? */

float foobar;

In another example, a well known bug pattern occurs when resources are not
released along error paths. General error path identi�cation using static analysis
is diÆcult, especially outside of speci�c programming constructs, such as the
exception handling mechanism. In contrast, we can leverage a given project's
conventional methods to easily identify error paths by identifying project speci�c
constructs. On one program we worked with, the error paths occur when the
return code from a function call stored in a variable named rc is not zero.
Using this project speci�c information, team members where able to de�ne the
following bug pattern and use it e�ectively during review sessions.

7

pattern

match

#Error path looks something like - if (rc != 0) {

if\s*\(.*rc.*\)

short question: RESOURCE RELEASED ALONG ERROR PATH?

long question: Are obtained resources released along error paths?

\pattern

Another example, demonstrating the use of a sequence of matches and non-
matches of Perl regular expressions, follows. During the code review session, the
reviewers should ensure all dereferenced pointers are always veri�ed to be non-
null, at runtime. A review question associated with dereferencing pointers would
remind reviewers of the risk of a null pointer exception. However, the tool should
only identify sections of code, and not comments. This was important for the
project under review, as there were many comments that included dereference
statements. The bug pattern below ignores C++ style comment lines and then
checks for a pointer dereference. Only then is the review question added to the
code under review.

pattern

#check that this is not a comment line

nmatch

\/\/

next {

#this is probably a dereference line

match

->

}

short question: NULL DEREFERENCE?

long question: When dereferenced, can a pointer ever be null

\pattern

One obvious problem with this pattern is the possible presence of C-style
comments. Due to the inherent limitations of regular expressions, it may be
necessary for the project enforce a slightly more restrictive coding standard,
or else risk false posititves. Conversely, the tool may be well suited for the
enforcement of coding standards in the project itself. This is a topic for future
exploration.

In a more complex example, perhaps the program has recently had a problem
with C++ copy constructor methods.

pattern

match

(.*)::(.*)\(const (.*)\&

8

code {

dollar1 eq dollar2 && dollar1 eq dollar3

}

short question: COPY CONSTRUCTOR

long question: Is a copy constructor method really required here?

\pattern

This pattern will match the following code:

Employee::Employee(const Employee& t)

Thus
agging the copy constructor method for special notice during the code
review, giving the code the desired added attention.

In a more advanced example, perhaps the project team wanted to ensure
all copy constructor methods are closely followed by corresponding destructor
methods.

pattern

match

(.*)::(.*)\(const (.*)\&

code {

dollar1 eq dollar2 && dollar1 eq dollar3

}

window(20) {

nmatch

(.*)::~(.*)

code {

dollar1 eq dollar2

}

}

short question: Is a matching destructor present?

long question:

\pattern

This pattern will alert that a matching destructor of the form:

Employee::~Employee()

might not be present.

It may also be useful to incorporate some or all of the contents of industry
standard code inspection checklists into the tool. These are often very useful
code review and programming guides, and are readily available. A bug pattern
would be written to describe each item on the checklist, as applicable. One such

9

checklist is Baldwin's Abbreviated C++ Code Inspection Checklist[2]. As part
of our pilot, we have incorporated most of the patterns from Baldwin's list, to
provide a baseline of bug patterns, which should be viable for most projects.

4 Using the Bug Pattern Customization Tool to

Assist the Code Review Process

In preparation for adoption of the bug pattern customization tool by a project, a
set of project speci�c bug patterns are created. As a starting point, general code
review checklists, like the one provided in [4], are used. Project members use
the meta-language to create a set of bug pattern de�nitions. The bug patterns
are de�ned using knowledge of project speci�cs, generally previous problems,
and are run against the project as sanity checks to see if the results make sense.
Sometimes, at this stage, issues are revealed but this is not the objective of
the stage, but a side bene�t. Based on previous experience we estimate this
work to be approximately one person week of work for a non-trivial middleware
component (which could be amortized over a period of a few months).

Typically, code review checklists and pitfalls are categorized according to
review concerns - for example, declarations, data items, initializations, macros,
and synchronization constructs[4]. Code reviews should be performed with a
mindset similar to testing, and should be driven by these concerns. When a
certain concern drives a speci�c code review, the subset of bug patterns related
to that concern are used, thus further focusing the review process. For example,
if we are interested in problems related to the use of macros, then only the part
of the project annotated with review questions related to macros is actually
reviewed.

Next, as mentioned in previous sections, during the review meeting the an-
notated source code is reviewed instead of the original source code. When an
issue is revealed during the review, the review team might write a bug pattern
to search the code for additional occurrence of the same problem.

A concrete example follows. In a middleware project that extensively uses
macros, it was found that a set of macros, CA QUERY BIT SET being one of
them (see below), should be used in such a way that the �rst parameter contains
the word Flags and the second parameter contains the word FLAG. Once this
is identi�ed, a bug pattern can be written to check this for the entire code base.

10

if (!CA_QUERY_BIT_SET(pCsComTCB->BM.bmExtendedFlags,

CS_BM_NVBM_EX_FLAG__CALLED_BY_DP)) {

5 Experience

In this section we report empirical instances of usage of the bug patterns cus-
tomization tool. The initial results are encouraging and indicate that the tool
is useful in assisting the code review process.

5.1 ConTest Code Reviews

ConTest6 is a concurrent program testing tool, used extensively within IBM. As
an intrusive test tool that modi�es the object code of the program under test,
it should meet high quality standards in order to be used safely and reliably.
We found out that users have very little tolerance for false alarms that turn out
to be bugs in ConTest itself.

As a result of the high quality requirements, the ConTest development team
conducts regular code reviews. For the last two months, the code review sessions
were conducted on code annotated by the bug pattern customization tool. The
process of the code review included the owner going over the annotated source
code projected on the screen and rephrasing the code.

Obtaining the annotated code turned out to be quick and did not require
additional e�ort on the review team. In addition, the annotated review ques-
tions obtained, based on a customized set of bug patterns did not distract the
reviewer. Finally, actual problems were identi�ed with the help of the annotated
review questions.

For example in one review instance it was decided to change the interface
used in a function, findTargetString(), and pass it a pointer to one structure
instead of passing it three separate pointers that are logically connected. The
following is the annotated code segment with the review question that started
the discussion and eventual code change.

/*REVIEW QUESTION(3) - STORAGE INSTEAD? */

nTargetIndex = findTargetString(strNew.c_str(), &nIndexAfterTarget, &callType);

5.2 Avoiding Field Escapes Through Guided Code Review

The following string bu�er over
ow bug, recently surfaced during an embedded
software stack bringup. The o�ending code had been in place for several years,

6See www:alphaworks:ibm:com=tech=contest for details

11

with no issues. The routine takes place at the hand-o� point between two
di�erent embedded software components, where one component is about to
terminate, and the other is about to begin. Thus, the component interaction
is similar to an interprocess communication (IPC) scenario, as one component
does not have much knowledge of the other's internal data structures.

The variable glob fw vernum was de�ned as a 16 byte character array. The
fw version string variable points to a string of unknown length, because of the
IPC-like interaction. The following is executed by the o�ending code:

strcpy(glob_fw_vernum, (char *)of_data_stackptr->fw_version_string);

The length of the string actually originated from the embedded software
image, where it was originally generated by the build team. The build process
changed because of new developments on the platform. Thus, the length of the
string grew from 16 characters, to 40 characters. This increase in length created
a bu�er over
ow situation, which was not detected until a long time after the
o�ending code had been executed. Eventually, the embedded software stack
crashed due to a data storage interrupt, where the platform was attempting to
read from an address that no longer made sense, because it was overwritten by
the new longer version string.

A simple bug pattern could have easily warned reviewers of this situation.
Also, there is reason to believe the pattern would have been
agged, because of
a long history of string problems within this project. The relevant bug pattern
follows.

pattern

match

strcpy

short question: Is the buffer large enough? Is overflow handled?

long question: Has enough space been allocated to hold the size of

the string to be copied, and if not are there an overflow precautions?

Had the bug pattern review tool been available during the development of
this code, or during subsequent reviews of this portion of the �rmware, there is
reason to believe the bug would not have escaped the code review.

Another bug, this time a search routine error, was a unit test escape from
an embedded software component. In this situation, a data structure search
routine designed to be used, similar to the Standard C Library fread() routine,
is not properly utilized.

The search routine will only search the data structure beginning from the
location of the most recent search. If the entire structure is to be searched
the search routine must explicitly be instructed to do begin its search from the
beginning. This is done with the set start() routine. However, the bug would

12

not be caught with a simple unit test, as the test would most likely succeed on
at least the �rst pass, and would only fail after repeated runs of the test. The
o�ending source code bug follows.

set_filter(&filter,(uint8 *) "PCI-DEV" , 1,

S_Offset(PCI_DEV_NODE,uniqueId), drc_index);

node_ptr = find_node(&iter, &filter);

The repaired routine:

set_start(&iter, NULL);

set_filter(&filter,(uint8 *) "PCI-DEV" , 1,

S_Offset(PCI_DEV_NODE,uniqueId), drc_index);

node_ptr = find_node(&iter, &filter);

A similarly simple bug pattern could have prevented this unit test escape, as
this is a common pitfall in using this API. The relevant bug pattern is as follows.

pattern

match

set_filter

short question: Is set_start() called before set_filter()?

long question:

6 Conclusion

We have prototyped a portable bug pattern customization tool to assist the
rephrase review process. Bug patterns are de�ned using a simple pattern recog-
nition language, built on top of Perl regular expressions. Thus, the solution is
portable and can be applied to any programming language or for that matter
even to design documents. Once the tool is applied to a project, code lines
are annotated with review questions. Next, during the review meeting, the
annotated code is visible to all code reviewers, as the readers rephrase the code.

Empirical experience indicates that the bug pattern customization tool can
be e�ectively used to assist the code review process.

Further research will focus on gaining a comprehensive experience in the
usage to the tool and enhancing the pattern de�nition syntactic sugar language
to meet di�erent user's requirements.

References

[1] Eric Allen. Bug Patterns in Java. Apress, 2002.

13

[2] John T. Baldwin. An abbreviated c++ code inspection checklist, 1992.

[3] Daniel Galin. Software Quality Assurance. Addison Wesley.

[4] Brian Marick. The Craft of Software testing. Prentice Hall, 1995.

[5] Scott Meyers. E�ective C++. Addison-Wesley, 1997.

[6] Randal L. Shwartz and Tom Phoenix. Learning perl. O'REILLY, 1993.

A Pattern Language Semantics

Below is a description of the language used to de�ne a bug pattern. For sim-
plicity the semantics of the window and code blocks are not given. The descrip-
tion below assumes familiarity with Perl regular expressions[6]. Speci�cally, the
meaning of $`, $&, $', $1, $2,... is assumed and used.

A.1 Match Node (N)

A match node (N) is a node that contains a regular expression, N.R, to be
matched,

A N.$ ` (``before''), N.$& (``this'') and N.$' (``after''),

�elds and a variable length list of optional �elds N.$1, N.$2,... all pointing
to either a match node or a don't match node.

The actual implementation of the language refers to

N$` as before, N$& as this, N$' as after, N$1 as dollar1.

A.2 Don't Match Node (N)

A node containing a regular expression, N.R, that should not match and a
pointer to either a match node or a don't match node N.next.

A.3 Pattern De�nition

A pattern is a rooted tree of either match or don't match nodes. The Context
of a Pattern P wrt a String S is next de�ned.

The context of each node in a pattern, P, is de�ned wrt to a string S. The
context of the root tree of the pattern P is S. Given that the context of some
match node, N, in the pattern P is de�ned to be the string S1 then the context
of N.$`, N.$&, N$', N.$1, N.$2,.. are de�ned if N.R matches S1. They are
de�ned exactly according to the semantic of Perl for these operators (i.e., N.$`

14

is the part of S1 before the match, N.S& is the matched string, N$' is the part
of S1 that is after the match, $1 is the string that matched the �rst sub regular
expression that was enclosed in a parentheses in N.R, $2 matched the second
one, etc). Given that the context of a don't match node N is S1 the context
of N.next is de�ned only if S1 does not match N.R. In this case the context of
N.next is S1.

The context of a pattern P wrt to S is the association of a context to each
of its nodes as de�ned above.

A.4 A match

A string S matches a pattern P if the association of each node with a context
is a complete function to the set of strings (each node has a de�ned context).

15

