
Optimal Algorithmic Debugging and Reduced Coverage

Using Search in Structured Domains

Yosi Ben-Asher

Comp. Sci. Dep. Haifa University, Haifa, Israel

Igor Breger

Comp. Sci. Dep. Haifa University, Haifa, Israel

Eitan Farchi

I.B.M. Research Center, Haifa, Israel

Ilia Gordon

Comp. Sci. Dep. Haifa University, Haifa, Israel

October 21, 2005

Abstract

Traditional code based coverage criteria for in-
dustrial programs are rarely met in practice
due to the large size of the coverage list. In ad-
dition, debugging industrial programs is hard
due to the large search space. A new tool,
REDBUG, is introduced. REDBUG is based
on an optimal search in structured domain
technology. REDBUG supports a reduced
coverage criterion rendering the coverage of in-
dustrial programs practical. In addition, by
using an optimal search algorithm, REDBUG
reduces the number of steps required to locate
a bug. REDBUG also combines testing and
debugging into one process.

1 Introduction

One of the problems of adequately testing in-
dustrial programs by meeting coverage crite-
ria is that the number of coverage tasks is too
large. For example, covering all the de�ne-use
relations of a given industrial program might
prove impractical, and indeed such coverage
criteria are rarely met in practice.

Given a program based coverage criterion
[11] de�ned on some directed graph deter-
mined by the program under test P , we
propose a corresponding, intuitively appeal-
ing, reduced coverage criterion. The directed
graph could be the program's static call graph,
the program's control
ow graph, the pro-
gram's de�ne-use graph, etc. The coverage cri-
terion can be any one of the standard criteria
de�ned on such graphs such as: statement cov-
erage, branch coverage, multi-condition cover-
age, or de�ne-use coverage ([4], [5], [10], [11]).

1

Reduced coverage requires meeting a much
smaller coverage task list and is thus more
practical than the standard coverage criteria.
Further research is required to determine the
con�dence level achieved by this new set of re-
duced coverage criteria.

Fixing some code based coverage C, a pro-
cess for obtaining a C reduced coverage cri-
terion and a process, called algorithmic de-
bugging, for assisting the programmer in de-
bugging the implementation ([6], [9], [8], [7],
[3]) are described. Then a method for com-
bining both processes in one tool, called Re-
duced Coverage and Algorithmic Debugging,
REDBUG, is described. Both processes lever-
age an optimal search algorithm de�ned on the
relevant program directed graph ([2], [1]).

In large industrial programs debugging is a
tedious and time consuming task due to the
large size of the search space. We address this
problem by applying an optimal search algo-
rithm to a run-time directed graph represent-
ing the program P . By doing this, we improve
REDBUG algorithmic debugging compared to
traditional algorithmic debugging and reduce
the number of queries required to locate the
fault.

This paper is organized as follows. First,
search in structured domains is introduced.
Next, reduced coverage and optimal algorith-
mic debugging is de�ned. Finally, a detailed
example is given.

2 Search in Structured Do-

mains

For the purpose of de�ning the concept of re-
duced coverage criteria and the optimal algo-
rithmic debugging process, we �rst explain the
general notion of an optimal search algorithm

in structured domains. Searching in struc-
tured domains is a staged process whose goal
is to locate a `buggy' element. The current
stage of the search process is modeled by a
set �. At the current stage, the `buggy' ele-
ment can be any element in �. The possible
queries at this stage � are modeled by a set
of sets f�1; : : : ; �kg, such that �i � �. Each
query �i either directs the search to �i in the
case of a positive answer (0yes0) to the query,
or directs the search to �n�i in the case of a
negative answer (0no0). This process continues
until j�j = 1 and a buggy element is located.
A search algorithm, denoted QD, is a decision
tree whose nodes indicate which query should
be used at each stage of the search. An opti-
mal search algorithm minimizes the number of
queries required to locate any buggy element.

Restricted types of structured search do-
mains, such as trees or directed graphs, have
been studied in [2]. In [2], it was shown that
an optimal search algorithm for trees, QD, can
be computed in O(jDj4) whereD are the tree's
nodes. In the case of a tree, the current stage
of the search process is modeled by a sub-tree.
The set of queries possible at each stage of
the search is modeled by all the sub-trees of
this tree, and an available sub-tree is queried
at each stage of the search. If the queried
sub-tree does not contain the buggy node, the
search continues with the complement tree.
An example of an optimal search algorithm for
a tree is given in �gure 1. The arrows point to
the next query. This search algorithm takes
three queries in the worst case. Any other
search which does not start at node 0v0 takes
at least four queries in the worst case1.

1Intutivaly, 0
v
0 separates the tree in the \middle".

Consider choosing 0
u

0 instead of 0
v

0 as 0
u

0 also, intu-

itively, separates the tree in the \middle". An adver-

sary would chose to answer 0
no

0. Next, you best chose
0
v

0. This time an adversary would answer 0
yes

0 result-

ing in two more queries, e.g., 0
m

0 answered by 0
no

0 and

then 0
n

0 answered by 0
no

0. Overall, four queries were

2

m

nm

n v

y

y

b

b
a

a b

v

u

u

r

y

y

y

y

optimal search algorithm starting at ’v’initial tree

r

v u

m n

a

Figure 1: Searching in a tree.

3 Reduced Coverage and

Optimal Algorithmic De-

bugging

Coverage and algorithmic debugging are next
de�ned.

Coverage - Coverage of a program P , re-
quires that the user will �nd a sequence
of inputs I1; : : : ; Ik, until the execution of
P on those inputs, P (I1); : : : ; P (Ik), sat-
is�es a condition. For example, the con-
dition might require that all statements,
branches or de�ne-use relations of the
program have been executed. The goal
of the coverage process is

� to �nd an input Ij that exposes a
fault in P or

� to give evidence that increases the
con�dence that P has no fault if the
coverage condition is met and no fail-
ing run, P (Ij), occurred.

Algorithmic debugging - Algorithmic de-
bugging is a machine guided search taken
by the user to locate a fault in the run

used which is worst than the number of queries that

result in the worst case when choosing 0
v

0.

P (Ij) once the run P (Ij) fails. The
algorithm tells the user where to place
the �rst breakpoint and query variable's
value. Then, based on some user feed-
back, the algorithm determines the pro-
gram location of the next breakpoint to
be placed by the user, and so forth. This
search can be fully automated when a
database of appropriate pre-post condi-
tions is available.

We are now ready to de�ne reduced cov-
erage. We are given a program P , a directed
graph, GP , de�ned by P and a code based cov-
erage criterion C. We are further given that
each component, or node, ui of the graph GP

corresponds to a subset of P 's statements. We
use the notion of an optimal search of GP to
de�ne a reduced coverage criterion. We say
that P is reduced covered by a set of inputs I
if

� u1; : : : ; uk correspond to an optimal se-
quence of queries applied by the opti-
mal search algorithm when GP is treated
as a structured search domain and the
\buggy" element is not found.

� the coverage criterion C is obtained on
u1; : : : ; uk by I .

3

As the number of nodes required to optimally
query a directed graph is small compared to
the number of nodes in the graph, the num-
ber of coverage tasks to cover, such as code
branches to cover, is greatly reduced render-
ing the task of obtaining a reduced coverage
criterion practical.

If the reduced coverage is met, then it is as if
an adversary chose the worst components for
us to cover (in terms of the way these compo-
nents are related to each other in GP). Next,
each of the chosen components are covered ac-
cording to the coverage criterion C. As a result
our con�dence level that the program P does
not have a fault increases.

Applying our method, the optimal search
algorithm is given a directed graph GP de-
termined by the program and output a list of
components to be covered u1; : : : ; uk. The pro-
grammer attempts to cover each component,
ui, according to the coverage criterion C. If a
failure occurs the algorithm debugging stage is
invoked guiding the programmer in the debug-
ging of the failure. The algorithmic debugging
phase applies the same optimal search algo-
rithm to a run-time directed graph determined
by the program P , such as the dynamic pro-
gram call graph. In this way the user search
for the bug is guided. As an optimal search is
used to guide the algorithmic debugging stage,
the number of breakpoints to set an inspect
by the user is greatly reduced rendering the
debugging task of large industrial components
simpler.

In REDBUG, reduced coverage and the
new algorithmic debugging process were im-
plemented for the static and dynamic call
graph of the program. The rest of the paper
concentrates on the details of the implementa-
tion.

4 Detailed example

We demonstrate how REDBUG is used to ob-
tain reduced coverage and debug program fail-
ures. REDBUG is currently designed to work
with call coverage and contains the following
components:

1. An instrumentation module that can gen-
erate the static call graph CP of a given
program P . The resulting static graph
CP is converted to a tree by selecting a
spanning tree of CP . For a given input
I of P , this module can also produce the
dynamic call graph CP (I). Note that for
call coverage, CP (I) is in fact a tree, as
each call to a function has a single caller.
Thus, we refer to CP as the static tree
of P and to CP (I) as the dynamic tree of
P (I).

2. The search module, which computes the
optimal search algorithm ACP

for the
static tree of P and ACP (I)

for the dy-
namic tree of P . This module is interac-
tive, and based on the answer for the last
query (fed to it by the user) it prompt the
next node to query in CP or CP (I).

3. Finally, the debugger is used to determine
if a given call to a function f(:::) is buggy
or not. We use the debugger breakpoint
mechanism to locate a speci�c call to a
function in CP (I). Once a suitable break-
point is reached, we use the debugger to
check the values of f(:::)'s variables and
see if their value is as expected. In the
following example, we inserted a check for
the validity of a pre-post condition in ev-
ery function that is queried. We prompt
0yes0 if the pre-post condition of a given
call is 0false0, meaning that failure is in
that call and 0no0 otherwise.

4

We have chosen a simple program2 that
computes the value of roman numbers. For
the input "MIX" the program should com-
pute 1009, for "MXI" the program should
compute 1011, etc. Many combinations are
not allowed, e.g., 0MXM 0;0 LL0;0 IIIV II 0 for
which an error message should be printed.

The program implements the grammar of
roman numbers using the following routines:

� thousands() - converts each 'M' to +1000

� �vehundreds() - converts 'CM' to +900
and each 'D' to +500

� hundreds() - converts 'CD' to +400 and
each 'C' to +100

� �fties() - converts 'XC' to +90 and each
'L' to +50

� tens() - converts 'XL' to +40 and each 'X'
to +10

� �ves() - converts 'V' to +5

� ones() - converts 'IX' to +9, 'IV' to +4
and each 'I' to +1

� match(), next token() and error() - pro-
cess the input and report errors

A simple pre-post condition function
prePost(int before; int after; int max inc) is
used to check if a given call to a function con-
tains a bug. This is done to leverage the cov-
erage process. When during the coverage pro-
cess a test fails we immediately know which
function is failing and the debugging phase is
simpli�ed. Obviously, the proposed notion of
query depends on the ability of the program-
mer to insert such tests at suitable places in

2The program was written by Terry R. McConnell.

the code. Due to the way functions to be cov-
ered are chosen in the reduced coverage pro-
cess , the list of functions to cover is usually
small. As a result, the task of inserting pre-
post conditions for the list of functions to cover
becomes easier.

First instrumentation is applied to generate
the static call tree of the program. The search
module is then applied on the resulting tree.
Figure 2 is a screen shot of the the search mod-
ule showing: the static tree, and the �rst query
in an optimal search of the call tree. Thus, the
�rst function to cover is thousands(). We can
see that we need to cover only four functions
out of the total of eleven functions.

Next we select the inputs to cover
thousands(), these inputs contain three roman
numbers: XXV II for which thousands() out-
puts the correct value of 27, MMXLV I for
which thousands() outputs the wrong value
of 46 (instead of 2046) and MMXXXIV for
which thousands() outputs the correct value
2034.

In order to locate and correct the bug, we
move to the algorithmic debugging phase, gen-
erate the dynamic tree and apply the search
tool on the dynamic tree (starting from the
�rst call to thousands()). The dynamic tree
contains 35 nodes and as is depicted in �gure 3
can be searched in at most six queries. Figure
3 describes the situation after three queries on
the dynamic tree. At this stage, we pressed
`yes0 to the �rst query on thousands(), `no0 to
the second query on thousands() (marked at
the bottom of the window in �gure 3), `yes0 to
fivehundreds(), and `yes0 to fifties() . We
are now advised to query fives(), call number
4 and see if it is erroneous or not (see �gure
3).

We evaluate each query to a speci�c call us-
ing the debugger. First we insert a call to
prePost() before the function returns and in-

5

Figure 2: Search tree for Roman:c .

sert a breakpoint after the calls to prePost().
By examining the result of the pre-post con-
ditions and the value of other variables we
are able to decide if the current call executed
correctly or not. For example, in �gure 4
we can check the return value of prePost()
and other variables using the Watch window.
In �gure 4 we have two active breakpoints,
and the debugger stops with a false condition
from prePost(num test; num; 1000), so that
this call is buggy. The debugger is also used to

reach a speci�c call , e.g., fives(), call num-
ber four, of the dynamic tree. This is done
using a global counter in the code which is in-
cremented every time fives() is called. The
breakpoint is set to stop only if the value of
this counter is the desired one (four in the case
of fives(), call number four).

We use the debugger to evaluate call number
four, of fives() and �nd out that the pre-post
condition is true. Consequently we prompt
0no0 to the search tool. As can be seen from

6

Figure 3: Next query is fives() call no. 4.

the tree in �gure 3, the next query will be on
match() for which we also prompt 0no0 (after
checking the program state using the debug-
ger). Thus, the search process ends by locating
the bug in tens(). We use the debugger, one
last time to examine the pre-post condition
and try to locate the bug. Figure 5 depicts this
stage, the call to prePost(num test; num; 80)
return false, as initially the value accumulated
so far is num test = 2000, yet the value re-
turned by tens() which should have been be-

tween num test and num test + 80 has been
reduced to num = 40. As we know that the
call to fives() is correct, we �nd the bug in
statement num = 40 that should have been
num + = 40.

After �xing that bug, we continue in the re-
duced coverage process and as no further bugs
are found the process ends. This process ob-
tained reduced call coverage using three inputs
and used six tests to locate the failure.

7

Figure 4: Using the debugger to evaluate a query.

5 Conclusion

A tool called REDBUG that combines soft-
ware testing and algorithmic debugging is in-
troduced. The tools uses the same underlying
technology of optimal search in structured do-
mains to support the testing and debugging
phases.

Traditional code based coverage criteria
have large coverage task list rendering them
impractical. The notion of an optimal search
in structure domain is used to de�ne a new set
of reduced coverage criteria corresponding to
the traditional coverage criteria rendering the
coverage of industrial programs practical. If a
reduced coverage criteria is met, then it is as
if an adversary chose the most complex com-
ponents for the user to cover. More research
is required to determine the con�dence level
these new reduced coverage criteria provide.

In large industrial components the problem
of locating a failure requires many hours of
setting breakpoints and observing of program
behavior. By using an optimal search algo-
rithm, REDBUG is able to reduce the num-
ber of breakpoints a programmer should set
in-order to �nd the bug. REDBUG will be
especially useful in setting were there are the
call stack is big or when there are a lot of com-
munication layers resulting in large search do-
mains.

Further research will implement REDBUG
on other program de�ned graphs. It would be
interesting to see how much saving is obtained
by the new algorithmic debugging method on a
set of real life industrial examples. Finally, the
issue of the con�dence level that the new set
of reduced coverage criteria introduce should
be addressed.

8

Figure 5: Using the debugger to locate the bug in tens().

References

[1] Y. Ben-Asher and E. Farchi. Compact
representations of search in complex do-
mains. International Game Theory Re-
view, 7(2):171{188, 1997.

[2] Y. Ben-Asher, E. Farchi, and I. Newman.
Optimal search in trees. In 8'th Annual
ACM-SIAM Symposium on Discrete Al-
gorithms (SODA97), New Orleans, 1997.

[3] Jong Deok Choi and Andreas Zeller.
Isolating failure inducing thread sched-
ules. International Symposium on Soft-
ware Testing and Analysis, 2002.

[4] L. A. Clarke. comparison of data-
ow
path selection criteria. IEEE Transaction
on Software Engineering, 1985.

[5] L. A. Clarke. An investigation of data

ow path selection criteria. Work Shop

9

On Software Testing, Ban�, Canada,
1986.

[6] Peter Fritzson et. al. Generalized algo-
rithmic debugging and testing. ACM Let-
ters on Programming Languages and test-
ing, 1:303{322, 1992.

[7] Fritzson Peter Kamkar Mariam and
Shahmehri Nahid. Interprocedural dy-
namic slicing applied to interprocedu-
ral data
ow testing. In Proceedings of
the Conference on Software Maintenance,
1993.

[8] Nahid Shahmehri Mariam Kamkar and
Peter Fritzson. Interprocedural dynamic
slicing and its application to general-
ized algorithm debugging. In Proceedings
of the International Conference on Pro-
gramming Language, 1992.

[9] Mikhail Auguston Peter Fritzson and
Nahid Shahmehri. Using assertions in
declarative and operational models for
automated debugging. Journal of Sys-
tems and Software, 25(3):223{232, June
1994.

[10] Elaine J. Weyuker. Axiomatizing soft-
ware test data adequacy. IEEE Transac-
tion on Software Engineering, SE-12(12),
December 1986.

[11] Elaine J. Weyuker. The evaluation of
program-based software test data ade-
quacy criteria. Communications of the
ACM, 31(6), June 1988.

10

