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Abstract

Developers often describe testing as being tedious
and boring. Our work challenges this notion. We
describe tools and methodologies crafted to test
object-based storage devices (OSDs) for correct-
ness and compliance with the T10 OSD standard.
Special consideration is given to testing the secu-
rity model of an OSD implementation. Some work
was also carried out on building OSD benchmarks.
This work can serve as a basis for a general-purpose
benchmark suite for OSDs in the future, as more
OSD implementations emerge.

The tool described here has been used to verify
object-disks built by Seagate and IBM Research.

1 Introduction

Developers often find testing tedious and boring.
Our work attempts to challenge this notion. We
describe a tool set created to test object-storage-
devices (OSDs) for correctness and compliance
with the T10 OSD standard [14, 11], which proved
to be a difficult and challenging part of our over-
all development effort. Aside from correctness, per-
formance is an important quality of all implementa-
tions; initial work was carried out on benchmarking
OSDs.

Generally speaking, the T10 standard specifies an
object-disk that exports a two-level object-system
through a SCSI based protocol. The OSD contains
a set of partitions, each containing a set of objects.
The objects and partitions support a set of attributes.
Protection is provided by a credential-based security
architecture with symmetric keys.

Our group at IBM Research built an OSD to-
gether with a test framework; a description of
our object-store related activities can be found in
[5]. For the test framework, we faced several
choices ranging from white-box to black-box test-
ing. Black-box testing was selected as the primary
methodology because it would keep the testing in-
frastructure independent of the OSD implementa-
tion. However, in addition to the black box test-
ing, we developed some limited capabilities based
on gray-box techniques to test and debug our own
OSD. Building upon knowledge of the internals of
the target implementation, this had the potential to
considerably improve coverage.

Our goal was to build a small, light, tool set that
would achieve a good coverage. Atester pro-
gram was written to accept scripts containing OSD
commands. Thetester sends the commands to
the target OSD and then checks the replies, thereby
creating a certain workload on the target.

This kind of testing falls under the sampling cate-
gory. From the possible scenarios of commands that
reach the target, only a sample are tested. Passing
the tests provides a limited guarantee of compliance
and correctness; however, it does not prove there are
no bugs lurking in the code. The idea is to identify
and test the subset of scenarios that will provide the
best possible coverage. To address the sampling is-
sue and increase coverage, we wrote agenerator
program to generate scripts with special character-
istics.

Black-box testing proved a fortunate choice later
on. During 2005, we were part of a larger IBM Re-
search group that built an experimental object-based
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file system. This system was demonstrated at Stor-
age Networking World in the spring of 2005 [4].
The file system was specified to work with any com-
pliant OSD. To demonstrate this, we worked with
SeagateTM who provided their own OSDs. Our
group was commissioned to test the correctness and
compliance of our own target as well as Seagate’s.
This was a necessary prerequisite before wider test-
ing within the file system could be carried out.

The main contribution of this paper is to report
on our practices and experience in testing object
stores that are compliant with the new OSD T10
standard. As an emerging storage technology, ob-
ject storage is still in its infancy, but is expected to
gain momentum in the near future. So far, very few
OSD implementations have been reported, and even
fewer are compliant with the OSD standard. Hence,
we believe that our work regarding the validation
of such implementation and conformance with the
standard will be relevant and valuable to the com-
munity at large. In this paper, we also argue and
demonstrate that although close in spirit to a file
system, T10 compliant OSDs have unique charac-
teristics that distinguish their testing and validation
from that of traditional file systems. One of the most
notable differences is the OSD security model and
its validation.

This paper describes the tools developed, and
provides specific examples that emphasize how
these tools were tailored to address the specific dif-
ficulties in testing an OSD, both for compliance and
correctness. The rest of the paper is organized as
follows. Section 2 describes the T10 specification
and walks through some of the difficulties it poses
for testing. Section 3 describes the testing infras-
tructure. Section 4 describes the techniques used to
locate bugs. An important aspect of the OSD T10
protocol that requires special testing tools and tech-
niques is the OSD security model. Section 5 de-
scribes the mechanism developed to test the security
aspects of OSDs. Section 6 talks about the bench-
marks devised to measure performance. Section 7
describes related work and Section 8 summarizes
our findings.

2 The OSD specification

2.1 T10 overview

An object-disk contains a set of partitions, each
containing a set of objects. Objects and partitions
are identified by unsigned 64-bit integers. Objects
can be created, deleted, written into, read from,
and truncated. An additional operation that was
needed for the experimental object-based file sys-
tem demonstrated in [4] and may be standardized in
the near future isclear . Clearing means erasing
an area in an object from a start offset to an end off-
set. Partitions can be created and deleted. The list
of partitions can be read off the OSD with a list op-
eration. A list operation is much like areaddir
in a file system, where a cursor traverses the set of
partition-ids in the OSD. Similarly, the set of objects
in a partition can be read by performing a list on the
partition.

Partitions and objects have attributes that can be
read and written. A single OSD command can carry
a list of attributes to read and a list of attributes to
write, among other things. There are compulsory
attributes and user-defined attributes. Compulsory
attributes are, for example, object size and length.
User-defined attributes are defined by the user out-
side the standard. There are no size limitations on
such attributes. For brevity considerations, user-
defined attributes are not addressed here.

A special root object maintains attributes that
pertain to the entire OSD. For example, the used-
capacity attribute of the root counts how much space
is currently allocated on the disk.

An important aspect of a T10 compliant OSD
is its security enforcement capabilities. The T10
standard defines a capability-based security proto-
col, based on shared symmetric-keys. The protocol
allows a compliant OSD to enforce access-control
on a per-object basis, according to a specified secu-
rity policy. This enforcement is done using cryp-
tographic methods. The protocol allows capability
revocations and key refresh. The standard protocol
defines three different methods for performing the
validation, depending on the underlying infrastruc-
ture for securing the network. Of these, we only
consider the CAPKEY method.
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2.2 Difficulties

The T10 specification poses several serious diffi-
culties for testing tools. Three examples are high-
lighted in this section: testing atomicity and iso-
lation guarantees, testing parallelism, and verifying
quotas.

Atomicity and isolation guarantees are weak
in order to provide better performance; this creates
non-determinism. For example, assume two writes
W1,W2 are sent to the same extent in an object. The
result is specified as some mix of the data fromW1

andW2. This mix might be limited by the atomic-
ity provided by the OSD, which is implementation-
dependent.

Parallelism. Commands sent in parallel to an
OSD can be executed in any order. For example,
if a commandC1 = create-object(o) is sent con-
currently withC2 =delete-object(o), there are two
possible scenarios.

1. The OSD performsC1 and thenC2. The object
is created and then deleted. Both commands
return with success.

2. The OSD performsC2 and thenC1. The ob-
ject is deleted and then created. The delete
fails because the object did not exist initially.
C1 returns with success;C2 returns with an
object-does-not-exist error. Object
o remains allocated on the OSD.

In general, the non-determinism that results from
concurrently executing multiple commands on the
OSD poses a big challenge on its verification.

Quotas, which pose another kind of problem, are
specified as being fuzzy. For example, consider an
object with a certain quota limit. If the object-data
exceeds the quota limit, the targetmustsignal an
out-of-quota condition upon the next write into the
object. However, itmaysignal, at its own discretion,
an out-of-quota–even if the written data is less than
the quota but ’close’ to it by a certain confidence
margin. The upshot is that it is not possible to write
a simple test to check for quota enforcement.

Another issue is that object, partition, and LUN
used-capacity are not completely specified. In this
discussion, we focus solely on objects. An object’s
used capacity is defined to reflect the amount of

space the object takes up on disk, including meta-
data. However, an implementation has freedom in
its usage of space. For example, in one implemen-
tation, one byte of live data may consume 512 bytes
of space, whereas in another implementation it may
consume 8192 bytes (i.e., one 4K page for its meta-
data an one 4K page for data). Since various sizes
are legal, a single one-size-fits-all test is impossible
to devise.

3 Infrastructure

3.1 Components

Our OSD code, including the testing infrastructure,
is structured as follows (see Figure 1):

• tester : a relatively simple program that
reads scripts of OSD commands, sends them to
the target, and verifies their return values and
codes.

• iSCSI OSD initiator: an addition to the
Linux kernel of T10-specific iSCSI extensions.
Specifically, this refers to bidirectional com-
mands, extended CDBs, and the T10 command
formats[9].

• iSCSI target: a software iSCSI target.

• Front-End (FE): module on the target that de-
codes T10 commands.

• Reference implementation (simulator): the
simplest OSD possible.

• Real implementation (OC): an optimized OSD.

While building the components, we followed the
engineering principle of leveraging a small, well
tested, module to test and verify a larger module.
The simpler the module, the more confidence we
had in it. We aimed to keep testing-modules simple
and with low line counts.

3.2 Tester and script language

The design point was to build a simpletester
program. We were interested in minimizing the
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Figure 1: OSD code structure: the set of compo-
nents

amount of state kept on the tester side. Minimiz-
ing the state would simplify the tester and improve
its reliability1.

A script language was tailored specifically for
the OSD T10 standard. The commands fall into
two categories. The first category contains simple
T10 commands such ascreate , delete , read ,
write , and list . Each command can be ac-
companied by the expected return code and val-
ues. The second category contains composite com-
mands, such as the device snapshot command. This
command takes a snapshot of the entire contents of
the target or of a specific object. This ability is used
to compare the contents of the target with other tar-
gets, such as the reference implementation target or
a different target implementation.

The commands are grouped into blocks, which
can be defined recursively. The types of blocks are:

• Sequential block: Thetester waits for each
command to complete before submitting the
next command in the block.

• Parallel block: Commands in the block are
submitted to the target concurrently. It is the

1The total line-count for thetester is about 8000 lines of
C code

responsibility of the script writer to ensure
valid scripts (e.g., creating a partition must ter-
minate successfully before creating an object
within it, if the object creation is expected to
complete successfully). The order in which the
commands are sent is not defined. For exam-
ple, the iSCSI layer may change the order in
which it sends the commands.

A simple example is:

create oid=o1;
write oid=o1 ofs=4K len=4K;
delete oid=o1;

This script creates an object, writes 4K of data
into it, and then deletes it.

A more complex script is:

par {
create oid=o1;
create oid=o2;

}

par {
write oid=o1 ofs=20K len=4K;
write oid=o2 ofs=8K len=4K;

}

This script creates two objects concurrently and
then writes into them concurrently.

One can use theseq operator to create sequential
blocks:

create oid=o2;

par {
seq { create oid=o1; write oid=o1;

delete oid=o1 }
clear oid=o2 ofs=30K len=512;

}

Thetester execution phases are:

• Parse script, building a DAG (directed acyclic
graph) representing command dependencies.

• Submit commands according to the specified
order, handling target responses for each com-
mand and verifying the result.
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3.3 Reference implementation

We built a reference-implementation, orsimulator.
The simulator was the simplest OSD implementa-
tion we could write. It uses the file system to store
data, where an object is implemented as a file and a
partition is implemented as a directory. The simula-
tor core is implemented with 10000 lines of C code.
Incoming commands are executed sequentially; no
concurrency is supported.

3.4 Script generator

A script-generatorautomatically creates scripts that
are fed into thetester . The generator accepts pa-
rameters such as error percentage, create-object per-
centage, delete-object percentage, etc. It attempts to
create problematic scenarios such as multiple com-
mands occurring concurrently on the same object.
The expected return code for each command is com-
puted and added to the script. When the script is
executed, the tester verifies the correctness of the
return codes received from the target. Generated
scripts are intended to be deterministic so they pro-
duce verifiable results. However, non-deterministic
scripts are also useful for testing the stability of the
target to make sure it doesnt crash.

3.5 Gray-box testing

For gray-box testing, we addedcrash command,
configurations, andharness-mode. These are spe-
cific to our implementation and are not generic for
all OSDs. We modified the target OSD as little
as possible to allow for gray-box testing. This
would ensure that the tests were measuring some-
thing close to the real target behavior.

The crash command is a special command out-
side the standard command set. Used for testing re-
covery, it causes the OSD to fail and recover. We
believe it should be added to the standard in order
to enable automated crash-recovery testing.

A configuration file contains settings for internal
configuration variables, such as the number of pages
in the cache, the number of threads running concur-
rently, and the size of the s-node cache. Running the
same set of tests with different configuration files
yields better coverage with little expense. Specifi-

cally, assuming bugs occur at small configurations,
one can focus only on the small configurations.

Harness-modeis a deterministic method of run-
ning the OSD target. The internal thread package
and IO scheduling is switched to a special deter-
ministic mode. This mode attempts to expose cor-
ner cases and race-conditions by slowing down or
speeding up threads and IOs. Thetester pro-
gram is linked directly with the target, thereby re-
moving the networking subsystem. This creates a
harnessprogram. The harness can read and execute
a script file. The full battery of tests is run against
the harness. If a bug is found, it can be reproduced
deterministically.

We used a regression suite composed of many
scripts in testing. The regression contains short
hand-crafted scripts that test simple scenarios and
large 5,000 - 10,000 line tests created with the
script-generator.

4 Techniques

This section describes a number of techniques em-
ployed by the testing suite to test and verify non-
trivial properties of an OSD implementation. The
techniques proved to be extremely useful in iden-
tifying bugs in the system and as debugging tools.
The techniques that were developed to test the se-
curity aspects of an implementation are discussed
separately in Section 5.

4.1 Verifying object data

Data written to objects requires verification. We
used a two pronged approach to check whether the
on-disk data is equivalent to the data written into it
by the user. A lightweight verification method of
self-certifyingthe data was employed for all reads
and writes, and a heavyweight method ofsnapshots
was used occasionally.

The lightweight method consisted of writingself-
certifying datato the disk and verifying it when the
data is read back. For writes that are 256 bytes
or more, thetester writes 256-byte aligned data
into objects. At the beginning of a 256-byte chunk,
a header is written containing the object-id and off-
set. When reading data from the OSD, thetester
checks these headers and verifies them. Because the
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data is self-certifying, thetester does not need to
remember which object areas have been written to.
A complication arises withholes. A hole is an area
in an object that has not been written to. When a
hole is read from disk, the OSD returns an array of
zeros. This creates a problem for thetester be-
cause it cannot distinguish between cases where the
area is supposed to be a hole and cases where the
user wrote to the hole but the target “lost” the data.

Snapshotsare the heavyweight method. A snap-
shot of an object disk is an operation performed by
the tester . Thetester reads the whole object-
system tree off the OSD and records it. In order to
verify that a snapshot is correct, thetester com-
pares it against a snapshot taken from the simula-
tor. Technically, the object-system tree is read by
requesting the list of the partitions and then the list
of the objects in each partition. All the data, includ-
ing attributes, from the root, partitions, and objects,
is read using read and get-attribute commands.

Using snapshots helps thetester avoid having
to keep track of the state of the target. Thetester
just needs to compare its state against another OSD.
Theoretically, if we hadn different implementa-
tions, we could compare them all with each other.
In practice, the regression suite runs against three
different implementations: harness, simulator, and
real-target. The snapshots are compared to each
other.

The problem of verifying object data is very sim-
ilar to verifying file data, and therefore the two
abovementioned methods are similar to standard
practices in testing file systems, except for the treat-
ment of holes.

4.2 Crash recovery

Recovery is a difficult feature to verify because it
exhibits an inherently non-deterministic behavior.
For each command that was executing at the time of
the failure, the recovered OSD state may show that:
it had not been started, it was partially completed,
or it finished completely.

To cope with this problem, we allow for check-
ing the consistency of only a partial section of the
system. For example, in the script

par {
seq { create oid=o1;

write oid=o1 ofs=4K len=512;
crash }

seq { create oid=o2;
write oid=o2 ofs=20K len=90K
}

seq { create oid=o3;
write oid=o3 ofs=8K len=8K }

}

snap_obj oid=o1;

three objects,o1, o2, o3 , are created and
written to. After the write too1 completes, the OSD
is instructed to crash and recover. Finally, the snap-
shot from objecto1 is taken. It is later compared
to the snapshot from the reference implementation.
The state of objectso2 ando3 are unknown; they
may contain all the data written to them, some of it,
or none of it. In fact, they may not exist at all.

4.3 List command

The specification of thelist command is very lax
in its definitions of consistency. For example, if a
list operation is performed on a partition, and ob-
jects are created concurrently, the said objects can
show or not-show up in the list. This makes testing
difficult.

We took a two pronged approach with list-testing.
At points where the state of the OSD is determinis-
tic, a snapshot is taken and compared against the
reference implementation. This tests the list oper-
ation because taking the snapshot involves a listing
of the partitions. Additionally, some of the scripts in
the regression suite send the list concurrently with
other commands–without verifying the returned re-
sults.

4.4 Bug hunting

TheScript-generatorprogram is a very useful tool.
Its primary use was to increase testing coverage
via automatic generation of interesting tests. How-
ever, it also turned out to be a useful debugging
tool. Hunting for a bug that was initially identified
with a very long and automatically generated script
(say, 10,000 lines) required the generation of many
shorter scripts. Instead of manually generating the
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short scripts, we could use the generator’s input ar-
guments wisely to produce scripts that narrow the
search space.

5 Testing of security mechanisms

The T10 OSD standard specifies mechanisms for
providing protection. We refer to these as these-
curity mechanisms(corresponding to [14, Section
4.10] on policy managementand security). This
section discusses the techniques used to test the se-
curity mechanisms implemented by an OSD target,
specifically the CAPKEY security method.

Most of the tested security mechanisms have to
do with the validation of commands. Testing the
implementation for correct validation is extremely
important as a minor inconsistency of an OSD tar-
get with the specification may violate all protection
guarantees.

5.1 Validation of an OSD command

The OSD standard uses a credential-based security
architecture. Each OSD command carries an addi-
tional set ofsecurity fieldsto be used by the secu-
rity mechanisms. We refer to this set of fields as a
credential; this is a simplification, for the sake of
brevity, of the credential definition as specified in
the OSD standard.

Every incoming command to the OSD target re-
quires the following flow of operations to be exe-
cuted by the target:

1. Identify the secret key used to authenticate the
command. This stage requires access to previ-
ously saved keys.

2. Using the secret key, authenticate the contents
of all command fields (including the security
fields).

3. Test that the credential content is applicable to
the object being accessed. This stage requires
access to previously saved attributes of the ob-
ject.

4. Test that all actions performed by this com-
mand are allowed by the credential.

The T10 OSD standard specifies the exact content
for each security field in the command. A target
permits the execution of a command if all security
fields adhere to this specification.

We say that a credential isgood if (1) it is valid
and (2) its appropriate fields permit the command
that ’carries’ it. We say that a credential isbad if it
is either invalid (e.g., has bad format or is expired)
or if it does not permit the operations requested
by the command that ’carries’ it.Valid Commands
are commands that carry good credentials, whereas
commands that carry bad credentials are considered
invalid.

5.2 Testing approach

For a given command and a given target state, there
may be many possible good credentials and many
possible bad credentials. A perfect testing suite
should test:

For every OSD command:

For every possible target state:

1. Send the command with all possible
good credentials.

2. Send the command with all possible
bad credentials.

The general problem of increasing coverage,
whether command coverage or target state cov-
erage, is addressed in Section 3. There we de-
scribe how a clever combination of thetester
together with thescript-generator can yield
increased coverage. Section 5.5 describes the inte-
gration of specialsecurity stateparameters into the
tester andgenerator for the purpose of test-
ing the security mechanisms. Considering the re-
gression suite described in Section 3 as the basis, we
now focus on the problem of testing security mech-
anisms for a given command in a given target state.

The number of possibilities per command is too
large to be fully covered. A random sampling ap-
proach is therefore used for this problem as well.

5.3 Generation of a single credential

For a given command with given state parame-
ters, a singlegood credentialis generated using a
constraint-satisfaction approach[3, 1] as follows:
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1. Build a set of constraints which the credential
fields should satisfy.

• The constraints precisely define what val-
ues would make a good credential, as
specified by the standard.

• A single constraint may assert that some
field must have a specific value (e.g., the
object-id in the credential must be same
as the object-id field in the command).
Alternatively, it may assert that a certain
mask of bits should be set (e.g., for a
write command, the write permission bit
must be set).

• A single field may have several con-
straints, aggregated either by an AND re-
lation or an OR relation. For example,
’the access tag field should be identical
to the access tag attribute’ OR ’it may be
zero’ (in which case it isn’t tested).

2. Fill all fields with values that satisfy the con-
straints.

• For a field that has several options, one
option is randomly chosen and satisfied.

• Each field is first filled with a ‘minimal’
value (e.g., the minimum permission bits
required for the command). Then it may
be randomly modified within a range that
is considered ‘don’t-care’ by the con-
straint (e.g., adding permission bits be-
yond the required ones).

Generating abad credentialstarts by generating
a good credential as described above. We then ran-
domly select a single field in the credential and ran-
domly ‘ruin’ its content so that it no longer satisfies
its constraints.

How is this generation technique integrated with
the existing tester? Thetester controls whether
a good or a bad credential is generated for a given
command, and it expects commands with bad cre-
dentials to fail; that is, if they are completed suc-
cessfully by the target, it is considered an error.
Commands with good credentials are expected to
behave as if security mechanisms do not exist.

When generating a bad credential, ourtester
generates one invalid field at a time. This is justified

since almost all causes for rejecting a command are
based on a single field. The standard does however
specify that some fields should be validated before
others. Since we only generate one invalid field at a
time, this specification is not tested in our scheme.

Randomness is implemented as pseudo-
randomness. This allows thetester to control the
seed being used for the pseudo-random generation,
enabling us to reproduce any encountered bug.

We now describe how to generate multiple ran-
dom credentials for each command. This is required
in order to cover as many rules as possible involved
with validating a command.

5.4 Generation of many credentials

For a given command, thetester has several
modes for generating credentials:

• A deterministic mode, where minimal cre-
dentials are generated.

• A normal mode, where each command is sent
once with a random good credential. This
mode allows testing many good credentials
while activating the regression suite for other
purposes.

• A security-testingmode described below.

The security-testing mode sends each command
2N times,N times carrying a random good creden-
tial andN times carrying a random bad credential.
However, since OSD commands are not idempotent,
this should be done carefully due to the following
difficulties:

1. Each script command may depend on success-
ful completion of previous commands. Hence,
it is desirable to generate a command (whether
with a good or a bad credential) only after all
previous commands completed successfully.

2. On the other hand, some commands cannot be
executed after they were already executed once
(e.g., creating an object). Hence, a command
should not be re-sent after it was already sent
with a good credential.
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A script is executed in thesecurity-testing mode
in two stages, while each command is sent multi-
ple times. The underlying assumption is that ev-
ery script ends by ‘cleaning up’ all modifications it
made, thus restoring the target to its old state.

First Phase: each command in the script is
sentN times withN randomly generatedbad
credentials, expectingN rejections. The com-
mand is sent once again, this time with agood
credential, expected to succeed.

Second Phase:the script is executedN − 1
times in the normal mode (carrying a random
good credential for each command), thus com-
pletingN − 1 more good credentials for each
command.

This technique proved to be very practi-
cal, mainly when used with long automatically-
generated scripts. Its main contribution was in test-
ing multiple bad paths. For example, a command
accessing a non-existing object using an invalid cre-
dential or a command reading past object length
while also accessing attributes that are not permit-
ted by the credential.

5.5 Generating security-states at the target

The OSD security model defines a non-trivial mech-
anism for themanagement of secret keys. It involves
interaction between the OSD target and a stateful se-
curity manager. To test this mechanism, the testing
infrastructure should enable the generation of sce-
narios such as:

• Bad synchronization of key values between the
security manager and the target.

• A client uses an old credential that was calcu-
lated with a key that is no longer valid.

To generate such scenarios, we let thetesteract
as a security manager and maintain alocal-state
of key values shared with the target. In addition
to the regularset key command we introduced
two special script commands:set key local,
set key target used to simulate scenarios
where the key is updated only on one side.
These extensions are within the black-box testing

paradigm and do not require any modification of the
target. These two commands proved very handy: by
replacing normalset key commands with these
special commands, scripts with good key man-
agement scenarios can be easily transformed into
scripts that simulate bad key management scenar-
ios.

Another security mechanism requiring a state-
aware tester isrevocation. The OSD security model
offers a per-object revocation mechanism via a spe-
cial object attribute called thepolicy/access tag. By
modifying this attribute, a policy manager may re-
voke all existing credentials allowing access to this
object. Ourtester was extended to support this
mechanism by keeping the state of the policy/access
tags for selected objects; this allowed us to ver-
ify an implementation of the revocation mecha-
nism. By introducing a simplified keys-state and the
revocation-attribute in thescript-generator ,
we enabled the generation of many revocation sce-
narios as well as many key-management scenarios.

6 Benchmarks

Once an OSD is built, a natural question to ask is
what is its performance. Or rather, how well does it
perform? Benchmarking is a complex issue. There
are many benchmarks for file systems and block
disks; both close cousins to object-disks. However,
we argue that these benchmarks are not adequate for
measuring OSD performance.

Block-disk benchmarks contain only read and
write commands while OSDs support a much richer
command set. In the file system world, NFS-servers
and NAS-boxes are the closest to object-disk. How-
ever, NFS benchmarks such as Spec-SFS [12] con-
tain a lot of directory operations that are not sup-
ported by OSDs. Furthermore, the workload on a
NAS-box is quite different from the expected work-
load for an object-disk. The following are a couple
of comparison points:

1. In Spec-SFS, the NFS lookup operation takes
up 27% of the workload. An OSD does not
support an operation similar to lookup.

2. Some architectures place the RAID function
above OSDs. This means that OSDs will con-
tain file-parts and see read-modify-write RAID
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transactions. This bears very little similarity to
NFS style workloads.

3. An OSD supports a rich set of operations that
are unique to

OSDs and do not translate directly to file sys-
tem operations. A good example is an OSD
Collection. OSDs support an ’add to collec-
tion’ operation. One possible use for this func-
tion is to add objects to anin-dangerlist, which
counts objects that may need to be recovered in
the event of file system failure. This operation
affects the workload and it is not clear what
weight it should be given in a benchmark.

The OSD workload is dependent on the file sys-
tem architecture with which it is used. Therefore, if
one sets out to build a Spec-SFS like benchmark for
OSDs there are a lot of question marks around the
choice of operation weights. As OSD-based file-
systems are in their infancy, we expect the ’right’
choice of operation weights to converge as the field
matures and more OSDs emerge. As part of our
OSD code, we built an initial framework for OSD
benchmarks. We expect these benchmarks to be
used as a tool to evaluate strengths/weaknesses of
a specific OSD implementation, and to be used to
design an OSD application on top of it. In the fu-
ture, there will undoubtedly be a need to develop a
’common criteria’ that can be used to compared and
evaluate standard OSDs, very much like file systems
implementations.

6.1 OSD benchmark suite

We developed a skeleton for a benchmark suite,
which we believe can be extended and tuned in
the future. Our suite is composed of two types:
synthetic and spec-SFS like. All benchmarks are
written as client executables, using the OSD ini-
tiator asynchronous API. Currently, they measure
throughput and latency on the entire I/O path,
but other statistic information can be gathered as
needed.

• The synthetic benchmarks are built to
test specific hand-made scenarios. They are
useful for isolating and then analyzing a par-
ticular property of the system such as locking,

caching, or fragmentation. Currently, the syn-
thetic benchmarks consider the case of many
small objects, or alternatively a single large ob-
ject (similar to approach taken in [10]). Basic
measurements include throughput and latency
of read, allocating-write and non-allocating
(re-)write commands as a function of the I/O
size (ranging from 4K to 64K).

• The Spec-sfs-like benchmarks cre-
ate, as pre-test stage, a large number of objects,
and select a small part of it as a working set.
The benchmark then chooses a command from
an underlying distribution, randomly picks an
object from the working set, selects arguments
for the command from a given distribution, and
initiates the command. Statistics are gathered
on a per-command-type basis.

Below we provide a few examples of benchmark re-
sults that helped identify a problem, a weakness, or
a bug in our system. Currently, this is the main use
of the benchmark tool in our system.

6.2 Benchmark examples

Parameter tuning

The example in Figure 2 depicts throughput per-
formance (in Mbytes/sec) of our OSD implemen-
tation. The data was obtained from one of
the synthetic benchmarks for all-cache-hit reads,
allocating-writes, and non allocating-write com-
mands as a function of the I/O size. Our goal was
to reach the maximum raw TCP performance over a
1Gb/sec network. In general, the throughput grows
as a function of the I/O size. However, Figure
2 shows irregular behavior for writes (but not for
reads) when I/O size is 32K. This called for closer
analysis of a write command, which requires multi-
ple requests-to-transfer (R2T) messages of various
lengths. These R2T parameters need to be tuned to
eliminate the observed irregularity.

Target behavior

The next example is taken from the Spec-sfs like
benchmarks. It considers only read and write com-
mands (all other weights are set to zero), with a uni-
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Figure 2: Throughput performance for all-cache-hits reads and writes (in Mbytes/sec as a function of the
I/O size); irregularity is observed for writes at 32K

form size of 64K. Latency statistics for reads are de-
picted in Figure 3. When reads are all cache-hits, la-
tency per command is distributed uniformly around
5 - 20 msec. However, in the example below, a bi-
modal behavior is observed with two very distinct
means, indicating a mixture of cache-hit reads as
well as cache-misses.

Identifying Bugs

The third example shows how we traced a bug in the
Linux SCSI system using the benchmarks frame-
work. As we ran longer benchmarks and plotted
maximum command latency, we observed that there
are always a small (statistically negligible) number
of commands whose latency is substantially larger
than the tail of the distribution. This indicated star-
vation in the system. Indeed, by looking closely we
found that in the Linux SCSI implementation[7],
SCSI commands are submitted in LIFO instead of
FIFO order, without avoiding starvation (via a time-
out mechanism for example)2. Because our bench-

2This behavior is documented in the Linux code in
scsi lib.c. Commands are placed at the head of the queue to

marks are designed not to leave the target idle, the
LIFO behavior caused the said starvation. As a re-
sult, we patched the Linux kernel to support the ap-
propriate ordering of OSD commands.

7 Related Work

Model-checking is a method that lies within the
realm of black-box testing. This is because the tar-
get OSD code is not available to the tester. However,
a model-checking approach can be very powerful,
as shown in [15]. Proof systems can also be used to
verify an implementation [2].

File-system debugging using comparison is em-
ployed in NFS-tee [13]. NFS-tee allows testing an
NFSv3 server against a reference implementation
by situating a proxy in front of the two systems. A
workload is executed against the two systems and
their responses are compared; a mismatch normally
means a bug. This approach is similar to ours, how-
ever, NFS-tee does not combine any of the snapshot

support the scsidevicequiesce function. Apparently, this has
not been a problem in most systems since they do not overload
the SCSI midlayer.
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Figure 3: Latency of read commands (in msecs); a bimodal distribution is observed due to a mixture of
cache hits and cache-misses

or gray-box techniques we employ.
There are many file-system testing and compli-

ance suites (among the popular ones are [6, 8]); in
fact, these are too numerous to list here. Most suites
do not check file system recovery.

8 Summary and Future Extensions

In this paper, we report on our extensive efforts
in building a comprehensive testing suite for T10-
compliant OSDs, and our initial work on develop-
ing a common criteria for evaluating them. Object
stores are new, and to-date there are only a hand-
ful of implementations. As the technology emerges,
the need for such tools will be apparent. To the best
of our knowledge, our work is the first attempt to
address this need.

We report on the unique characterization of stan-
dard OSDs that made the testing procedure different
and challenging, and show how we addressed these
issues. Further work is required as more experience
with building OSDs is gained, including:

• Improve testing coverage by enhancing the
script-generation to address non-determinism
beyond what is currently supported.

• Extend the script language to define broader
recursive scripts, thus exploiting more compli-
cated patterns of parallelism.

• Testing the other T10 security method (CM-
DRSP and ALLDATA).

• Testing advanced functionalities in the OSD
T10 standard,e.g.,Collections.

• Enrich the benchmarks with real use-case data.
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