

# ibm

## An Optimized Symbolic Bounded Model Checking Engine

Rachel Tzoref, Mark Matusevich, Eli Berger and Ilan Beer

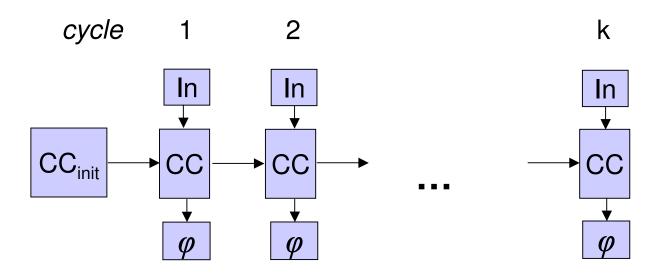
- Bounded Model Checking
- The Symbolic Simulation Based Approach
- Optimizations
- Under-approximation
- Experimental Results

3

#### The Bounded Model Checking Problem

- $\diamond$  Given a Model M, a specification  $\varphi$  and a cycle bound k, determine whether  $\varphi$  holds in the first k cycles of M.
- Used mainly for falsification.
- Considered to be easier than full model checking.




# Different Approaches for Solving the Bounded Model Checking Problem

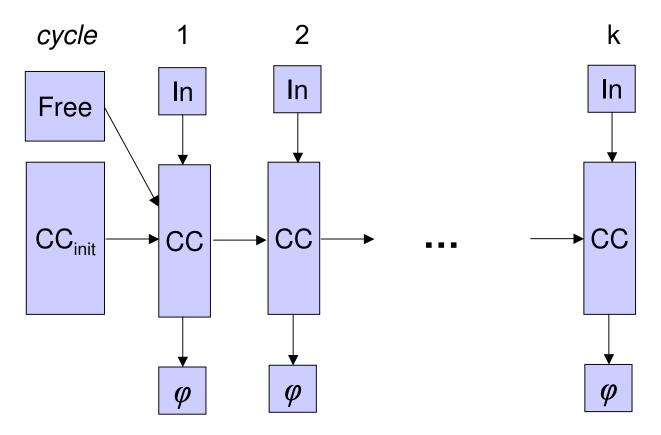
- The traditional approach, as in SAT-based BMC, is to analyze the behavior of the model based on the state variables.
  - Build a formula in which the variables are the state variables of the model, duplicated for each cycle.
  - ullet Find a satisfying assignment to those variables, which violates the specification  $\phi_{ullet}$
- Some symbolic simulation methods use an alternative approach: Analyze the behavior of the model as a function of the inputs to the model along all cycles (non-deterministic choices are treated as inputs).

- Bounded Model Checking
- The Symbolic Simulation Based Approach
- Optimizations
- Under-approximation
- Experimental Results

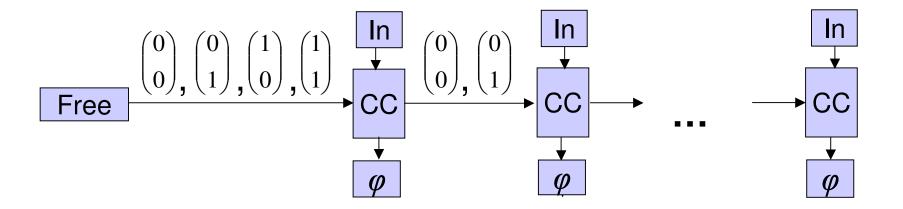
#### Analyzing the Model as a Function of the Non-determinism

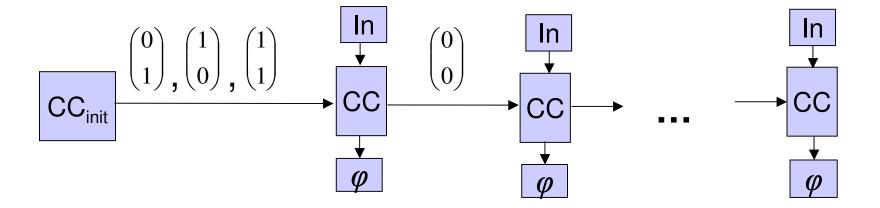
- $\diamond$  Unroll the sequential model M and the specification  $\varphi$  into an iterative combinational circuit.
- Represent all nondeterministic signals in M by free inputs.
- $\diamond$  In each cycle, build the BDD of  $\varphi$  as a function of the free inputs:




#### Advantages and Drawbacks

- Advantages:
  - Insensitive to the number of state variables in the model.
  - Allows evaluating multiple properties in a single run, without repeating calculations.
- Orawbacks:
  - Sensitive to the amount of non-determinism in the model.
  - In each cycle, non-determinism is added, and therefore computation complexity grows as cycles advance.
- Potentially suitable for wide circuits and shallow bugs, for example:
  - Datapath
  - Equivalence Checking


- Bounded Model Checking
- The Symbolic Simulation Based Approach
- Optimizations
- Under-approximation
- Experimental Results


#### **Open Machine**

Replace combinational logic that generates initial states by free inputs.



#### Open Machine as Abstraction







#### Open Machine as Abstraction - Summary

- Two levels of abstraction:
  - ◆ Each cycle of the open machine is an abstraction of its next cycle.
  - Each cycle of the open machine is an abstraction of the same cycle of the original machine.

#### Using the Open Machine

- We can use this abstraction in order to simplify the original machine.
  - Constant propagation
    - ♦ If gate g is constant b in cycle i of the open machine, then:
      - ♦ for all j>=i gate g is constant b in cycle j of the open machine.
      - ♦ for all j>=i gate g is constant b in cycle j of the original machine.
  - Logical Equivalence
    - ♦ If gate g in cycle i has the same function as gate h in cycle j, then:
      - ♦ for all k>=0 gate g in cycle i+k has the same function as gate h in cycle j+k of the open machine.
      - ♦ for all k>=0 gate g in cycle i+k has the same function as gate h in cycle j+k of the original machine.

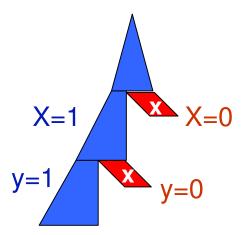
#### Representing the Iterative Combinational Circuit

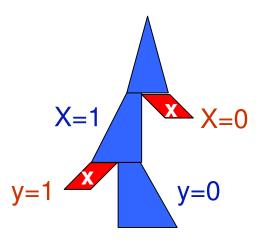
- Option 1: First unroll the circuit k times, then start evaluating the properties.
  - Enables 'global' heuristics, such as evaluating properties according to evaluation complexity rather than according to cycle order.
- Option 2: At each stage, hold the sub-circuit, required to evaluate current cycle.
  - Allows evaluating the properties without complete circuit unrolling.
  - Enables reductions reducing memory consumption.
- We managed to benefit from both options, by developing a data structure that:
  - Represents both the circuit and the open machine unrolled to k cycles.
  - Internally, represents all replications of a gate by a single object.
  - Consequently, enables efficient implementation of constant propagation and logical equivalence.

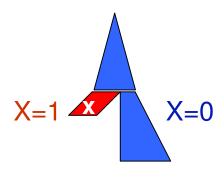
- Bounded Model Checking
- The Symbolic Simulation Based Approach
- Optimizations
- Under-approximation
- Experimental Results

#### **Applying Under-approximation**

- Search only a subset of the search space.
- Intuitive under-approximation: Set a free input at a certain cycle to a constant value.





#### Advantages:


- Scalable: tradeoff between BDD size and coverage.
- The computation never explodes. If needed, a stronger under-approximation is used.
- Degenerate model behavior only at a specific cycle.

#### Exact Evaluation with Under-approximation

- We implemented a mode that combines under-approximation with backtracking in order to cover parts of the search space that were skipped as a result of previous under-approximations.
- When reaching the cycle bound, we backtrack and start over computation using a different set of choices for the reduced variables.
- Thus, we will eventually achieve a full coverage of the search space.







- Bounded Model Checking
- The Symbolic Simulation Based Approach
- Optimizations
- Under-approximation
- Experimental Results

### **Experimental Results**

| # inputs | # vars | # props | Optimized BDD-Based BMC |             |        | zChaff Based SAT Solver |          |        |
|----------|--------|---------|-------------------------|-------------|--------|-------------------------|----------|--------|
|          |        |         | Time (sec.)             | Mem<br>(MB) | Cycles | Time (sec.)             | Mem (MB) | Cycles |
| 4        | 279    | 1       | 63                      | 353         | 49     | 957                     | 169      | 49     |
| 32       | 363    | 15      | 1948                    | 606         | 100    | out                     | 571      | 70     |
| 58       | 202    | 2       | 33                      | 136         | 6,7    | out                     | 9        | 0      |
| 175      | 1124   | 1       | 21529                   | 816         | 100    | out                     | 937      | 35     |
| 39       | 377    | 1       | 77                      | 176         | 23     | 415                     | 207      | 23     |
| 112      | 375    | 1       | 17                      | 96          | 10     | 10                      | 24       | 10     |
| 14       | 109    | 1       | 43                      | 74          | 16     | 23                      | 19       | 16     |